University of Washington

The Hardware/Software Interface
CSE351 Winter 2013

Java vs. C

University of Washington

Data & addressing

Roadmap Integers & floats

C: Java: Machine code & C
- : x86 assembly
car fc = malloc (sizeof (car)) ; Car c = new Car() ; programming
c->miles = 100; c.setMiles (100) ; Procedures &
c->gals = 17; c.setGals (17) ;
_ stacks
float mpg = get mpg(c) ; float mpg =
free (c); c.getMPG () ; Arrays & structs
= = Memory & caches
Assembly get mpg: Processes
language: pushq %rbp Virtual memory
APE REER, WERE Memory allocation
popg Srhp Javavs. C
ret $
Machine 0111010000011000
de: 100011010000010000000010
code: 1000100111000010
110000011111101000011111

Computer
system:

Winter 2013 Javavs. C 2

University of Washington

Java vs. C

m Reconnecting to Java
= Back to CSE143!

= But now you know a lot more about what really happens when we
execute programs

m We've learned about the following items in C; now we’ll see
what they look like for Java:
= Representation of data
= Pointers / references
= Casting
" Function / method calls
" Runtime environment
" Translation from high-level code to machine code

Winter 2013 Javavs. C 3

University of Washington

Meta-point to this lecture

m None of the data representations we are going to talk about
are guaranteed by Java

m In fact, the language simply provides an abstraction
m We can't easily tell how things are really represented

m Butitis important to understand an implementation of the
lower levels — useful in thinking about your program

Winter 2013 Javavs. C 4

University of Washington

Data in Java

m Integers, floats, doubles, pointers — same as C

" Yes, Java has pointers — they are called ‘references’ — however, Java
references are much more constrained than C’s general pointers

m Nullis typically represented as 0
m Characters and strings

m Arrays

m Objects

Winter 2013 Javavs. C 5

University of Washington

Data in Java

m Characters and strings
= Two-byte Unicode instead of ASCII
= Represents most of the world’s alphabets
= String not bounded by a ‘\O’ (null character)
= Bounded by hidden length field at beginning of string

the string ‘CSE351’:

C: ASClI 43|53|45|33|35|31(\0
0 1 4 7 16

Java: Unicode 6 00/43({00|53|00|45]00|33|00|35|00]|31

Winter 2013 Javavs. C 6

University of Washington

Data in Java

m Arrays
= Every element initialized to O
= Bounds specified in hidden fields at start of array (int — 4 bytes)
= array.length returns value of this field
= Hmm, since it has this info, what can it do?

int array[5]:

0O 4 20 24

Java 5100|/00{00|00|0O0

Winter 2013 Javavs. C 7

University of Washington

Data in Java

m Arrays
= Every element initialized to O
= Bounds specified in hidden fields at start of array (int — 4 bytes)
= array.length returns value of this field
= Every access triggers a bounds-check
= Code is added to ensure the index is within bounds
= Exception if out-of-bounds

int array[5]:

0O 4 20 24

Java 5100|/00{00|00|0O0

Winter 2013 Javavs. C 8

University of Washington

Data structures (objects) in Java

m Objects (structs) can only include primitive data types
" |nclude complex data types (arrays, other objects, etc.) using references

C | struct rec { Java | class Rec {
int i; int 1i;
int a[3]; int[] a = new int[3];
struct rec *p; Rec p;
};
};
struct rec *r = malloc(...); r = new Rec;
struct rec r2; r2 = new Rec;
r->i = val; r.i = val;
r->al[2] = val; r.a[2] = val;
r->p = &r2; r.p=r2;
il P ~ 1%t 51 3 |int[3]
O 4 16 20 O 4 8 12

Winter 2013 Javavs. C

University of Washington

Pointers/References

m Pointers in C can point to any memory address

m References in Java can only point to an object
= And only to its first element — not to the middle of it

C| struct rec { Java| class Rec {
int i; int 1;
int a[3]; int[] a = new int[3];
struct rec *p; Rec p;
};
some fn(&(r.a[l])) //ptr i
— X some fn(r.a, 1) //ref & index
0 4 16 20 > 1%e Rt 5[3 |int[3]
0O 4 8 12

0O 4 16

Winter 2013 Javavs. C 10

University of Washington

Pointers to fields

m In C, we have “->” and “.” for field selection depending on
whether we have a pointer to a struct or a struct

= (*r).ais so common it becomes r->a

m InlJava, all variables are references to objects
= We always use r.a notation
= But really follow reference to r with offset to a, just like C’s r->a

Winter 2013 Javavs. C 11

Casting in C

m We can cast any pointer into any other pointer

struct BlockInfo {
int sizeAndTags;
struct BlockInfo* next; Cast b into char

struct BlockInfo* prev; pointer so that
you can add byte

}i _
typedef struct BlockInfo BlockInfo; Offset without
scaling

i |
int x; Cast back into
BlockInfo *b; Blockinfo pointer
BlockInfo *newBlock; SO you can use it
as BlockInfo struct
newBlock = (BlockInfo *) ((char *) b + x);

— —0

s |n |p s |n |p

O 4 8 12 X

Javavs. C 12

Winter 2013

Casting in Java

University of Washington

m Can only cast compatible object references

class Sister extends Parent{
int hers;

class Object{

}; };

—> int address;

class Parent ({ };

class Brother extends Parent{

int his;

};

Parent a = new Parent();
Sister XX = new Sister();
Brother xy new Brother();
Parent Pl = new Sister();

Parent p2 = pl;
Sister xx2 = new Brother();

Sister xx3 = new Parent();
Brother xy2 = (Brother) a;

Sister xx4 =
Sister xx5 =

(Sister) p2;
(Sister) =xy;

//
//
//
//
//
//
//
//
//
//
//

// Parent is a super class of Brother and Sister, which are siblings

ok, everything needed for Parent

is also in Sister

ok, pl is already a Parent
incompatible type — Brother and
Sisters are siblings

wrong direction; elements in Sister
not in Parent (hers)

run-time error; Parent does not contain
all elements in Brother (his)

ok, p2 started out as Sister
inconvertible types, xy is Brother

How is this implemented / enforced?

Winter 2013

Javavs. C

13

University of Washington

Creating objects in Java

class Point { — fields
double x; 4————"’—————_————_————_———

double y;

Point () { — constructor
x =0;
y = 0;

}
— method
boolean samePlace (Point p) { 4————”'—————

return (x == p.x) && (y == p.y):’
}

}

// creation

Point newPoint = new Point|() ;

Winter 2013 Javavs. C 14

University of Washington

Creating objects in Java

a“

B new
= Allocates space for data fields

»”

= Adds pointer in object to “virtual table” or “vtable” for class

= vtable is shared across all objects in the class!

= Includes space for “static fields” and pointers to methods’ code
= Returns reference (pointer) to new object in memory
= Runs “constructor” method

m The new object is eventually garbage collected if all
references to it are discarded

Point object: | vtable X)4

constructor | samePlace /
Q)

Winter 2013 Javavs. C 15

Initialization
m newPoint’s fields are initialized starting with the vtable
pointer to the vtable for this class

m The next step is to call the ‘constructor’ for this object type

m Constructor code is found using the ‘vtable pointer’ and
passed a pointer to the newly allocated memory area for
newPoint so that the constructor can set its x and y to 0

. Pointw/)

<
I
o

constructor | samePlace /
Q* k

How does the constructor know
where to find x and y?

Winter 2013 Javavs. C 16

Java Methods

m Methods in Java are just functions (as in C) but with an extra
argument: a reference to the object whose method is being

called
= E.g., newPoint.samePlace calls the samePlace method with a pointer to
newPoint (called ‘this’) and a pointer to the argument, p —in this case,
both of these are pointers to objects of type Point

" Method becomes Point.samePlace(Point this, Point p)

= return x==p.x && y==p.y; becomes something like:
return (this->x==p->x) && (this->y==p->y);

Javavs. C 17

Winter 2013

University of Washington

Subclassing

class PtSubClass extends Point{
int aNewField;
boolean samePlace(Point p2) {

return false;
}
void sayHi() {
System.out.println("hello");

}

}

m Where does “aNewfField” go?

= At end of fields of Point — allows easy casting from subclass to parent
class!

m Where does pointer to code for two new methods go?
" To override “samePlace”, write over old pointer
= Add new pointer at end of table for new method “sayHi”

Winter 2013

Javavs. C 18

Subclassing

int aNewField;

}
void sayHi() {

}
}

class PtSubClass extends Point{

boolean samePlace(Point p2) {
return false;

System.out.println("hello");

University of Washington

aNewtField tacked on at end

N

vtable b4

aNewField

vtable for PtSubCV
(not Point)

constructor

samePlace

sayHi

g

-

Pointer to old code for constructor

Winter 2013

P

Pointer to new code for samePlace

Javavs. C

19

University of Washington

Implementing Programming Languages

m Many choices in how to implement programming models

m We've talked about compilation, can also interpret
= Execute line by line in original source code
= Less work for compiler — all work done at run-time
= Easier to debug — less translation

= Easier to run on different architectures — runs in a simulated
environment that exists only inside the interpreter process

m Interpreting languages has a long history
" Lisp —one of the first programming languages, was interpreted

m Interpreted implementations are very much with us today
= Python, Javascript, Ruby, Matlab, PHP, Perl, ...

Winter 2013 Javavs. C 20

University of Washington

Interpreted vs. Compiled

m Really a continuum, a choice to be made Compiled
= More or less work done by interpreter/compiler

Interpreted

m Java programs are usually run by a virtual machine

= VMs interpret an intermediate, “partly compiled” language called
bytecode

m Java can also be compiled ahead of time (just as a C program
is) or at runtime by a just-in-time (JIT) compiler

Winter 2013 Javavs. C 21

Virtual Machine Model

Bytecode
compiler

University of Washington

{ High-Level Language Program J

Ahead-of-time
compiler

{ Virtual Machine Langua

|

Virtual machine JIT

(interpreter)

Winter 2013

compiler

Native Machine Language

22

University of Washington

Java Virtual Machine

m Makes Java machine-independent Holds pointer ‘this

m Provides strong protections
m Stack-based execution model

m There are many JVMs
= Some interpret 0(1|2(3|4 n

variable table

Other arguments to method

Other local variables

= Some compile into assembly
" Usually implemented in C operand stack

constant
pool

Winter 2013 Javavs. C 23

JVM Operand Stack Example

Winter 2013

iload 1
iload 2
iadd

istore 3

‘i’ stands for integer,
‘a’ for reference,

‘b’ for byte,

‘c’ for char,

‘d’ for double, ...

University of Washington

No knowledge

of registers or
memory locations
(each instruction

is 1 byte — bytecode)

// push 15t argument from table onto stack
// push 2™ argument from table onto stack
// pop top 2 elements from stack, add together, and

// push result back onto stack

// pop result and put it into third slot in table

mov
mov
add
mov

0x8001, %eax
0x8002, %edx

2edx,
zeax,

s$eax
0x8003

Javavs. C

24

University of Washington

A Simple Java Method

Method java.lang.String getEmployeeName ()
0 aload O // "this" object is stored at 0 in the var table

1 getfield #5 <Field java.lang.String name> // takes 3 bytes

// pop an element from top of stack, retrieve its
// specified field and push the value onto stack.
// "name" field is the fifth field of the class

4 areturn // Returns object at top of stack

aload_o0 getfield 00 05 areturn

In the .class file; [2a|B4| 00|05 |BO

http://en.wikipedia.org/wiki/Java bytecode instruction listings

Winter 2013 Javavs. C 25

University of Washington

Class File Format

m Every class in Java source code is compiled to its own class file

m 10 sections in the Java class file structure:
= Magic number: OXxCAFEBABE (legible hex from James Gosling — Java’s inventor)
= Version of class file format: the minor and major versions of the class file
= Constant pool: set of constant values for the class
= Access flags: for example whether the class is abstract, static, etc.
= This class: The name of the current class
= Super class: The name of the super class
= |nterfaces: Any interfaces in the class
= Fields: Any fields in the class
= Methods: Any methods in the class
= Attributes: Any attributes of the class (for example the name of the source file,
etc.)
m A .jar file collects together all of the class files needed for the
program, plus any additional resources (e.g. images)

Winter 2013 Javavs. C 26

University of Washington

Compiled from Employee.java
: t)l (j class Employee extends java.lang.Object {
D I Sa Sse m e public Employee(java.lang.String,int);
public java.lang.String getEmployeeName();

Java Bytecode §>Ublic int getEmployeeNumber () ;

Method Employee(java.lang.String, int)
0 aload_ 0

1 invokespecial #3 <Method java.lang.Object()>
4 aload_0

5 aload_1

6 putfield #5 <Field java.lang.String name>

9 aload_0

10 iload_2

11 putfield #4 <Field int idNumber>

javac Employee.java 14 aload_0

javap -c Employee > Employee.bc 15 aload_1

16 iload_2

17 invokespecial #6 <Method void
storeData(java.lang.String, int)>

20 return

Method java.lang.String getEmployeeName ()

0 aload_ O

1 getfield #5 <Field java.lang.String name>
4 areturn

Method int getEmployeeNumber ()

0 aload_ O

1 getfield #4 <Field int idNumber>
4 ireturn

Method void storeData(java.lang.String, int)

Winter 2013 Javavs. C 27

University of Washington

Other languages for JVMs

m JVMs run on so many computers that compilers have been
built to translate many other languages to Java bytecode:
= Aspect), an aspect-oriented extension of Java
® ColdFusion, a scripting language compiled to Java
® Clojure, a functional Lisp dialect
= Groovy, a scripting language

= JavaFX Script, a scripting language targeting the Rich Internet
Application domain

= JRuby, an implementation of Ruby

= Jython, an implementation of Python

= Rhino, an implementation of JavaScript

= Scala, an object-oriented and functional programming language
= And many others, even including C

Winter 2013 Javavs. C 28

University of Washington

Microsoft’s C# and .NET Framework

m CH# has similar motivations as Java

m Virtual machine is called the Common Language Runtime;
Common Intermediate Language is the bytecode for C# and
other languages in the .NET framework

C# VB.NET J#
code code code
Compiler Compiler Compiler

— |

yor=evan= Common Language Infrastructure - ------- .

"

.NET compatible languages compile to a

Common second platform-neutral language called
Intermediate Common Intermediate Language (CIL).
Language

The platform-specific Common Language

Lcac:?{gor:} Runtime (CLR) compiles CIL to machine-
Rugti m% readable code that can be executed on the
current platform.
01001100101011

: 11010101100110 :
Winter 2013 29

