University of Washington University of Washington

Implicit Memory Allocation:
Garbage Collection

m Garbage collection: automatic reclamation of heap-allocated

The Hardwa re/Softwa re Interface storage—application never has to free

CSE351 Winter 2013 void foo() {
int *p = (int *)malloc(128);
return; /* p block is now garbage */

Memory Allocation Il m Common in functional languages, scripting languages, and

modern object oriented languages:
= Lisp, ML, Java, Perl, Mathematica

m Variants (“conservative” garbage collectors) exist for C and C++
= However, cannot necessarily collect all garbage

Winter 2013 Memory Allocation Il 2

Garbage Collection Classical GC Algorithms

Mark-and-sweep collection (McCarthy, 1960
m How does the memory allocator know when memory can be P (. v, ,)
freed? = Does not move blocks (unless you also “compact”)
® |n general, we cannot know what is going to be used in the future since it Reference counting (Collins, 1960)
depends on conditionals = Does not move blocks (not discussed)
= But, we can tell that certain blocks cannot be used if there are no . . .
ointers to them Copying collection (Minsky, 1963)
" Moves blocks (not discussed)

Generational Collectors (Lieberman and Hewitt, 1983)

m So the memory allocator needs to know what is a pointer and

what is not — how can it do this? ® Collection based on lifetimes
= Most allocations become garbage very soon
m We’ll make some assumptions about pointers: = So focus reclamation work on zones of memory recently allocated
= Memory allocator can distinguish pointers from non-pointers m For more information:
® All pointers point to the start of a block in the heap Jones and Lin, “Garbage Collection: Algorithms for Automatic

* Application cannot hide pointers Dynamic Memory”, John Wiley & Sons, 1996.
(e.g., by coercing them to an int, and then back again)

Winter 2013 Memory Allocation Il 3 Winter 2013 Memory Allocation il 4

University of Washington

Memory as a Graph

m We view memory as a directed graph
® Each allocated heap block is a node in the graph
= Each pointer is an edge in the graph

® Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, locations on the stack, global variables)
O reachable

Root nodes P ﬁ) C{
Not-reachable

Heap nodes
O O (garbage)
/
oY

A node (block) is reachable if there is a path from any root to that node

Non-reachable nodes are garbage (cannot be needed by the application)

Winter 2013 Memory Allocation Ii 5

University of Washington

Assumptions For a Simple Implementation

m Application can use functions such as:
" new (n) : returns pointer to new block with all locations cleared
" read(b, i) : read location i of block b into register

= b[i]
" write(b,i,v): write vinto location i of block b
= b[i] = v
m Each block will have a header word
= b[-1]

m Functions used by the garbage collector:
® is_ptr(p) : determines whether p is a pointer to a block
" length(p) : returnslength of block pointed to by p, not including header
" get_roots() : returns all the roots

Winter 2013 Memory Allocation il 7

University of Washington

Mark and Sweep Collecting

m Can build on top of malloc/free package

= Allocate using malloc until you “run out of space”
m When out of space:

= Use extra mark bit in the head of each block

® Mark: Start at roots and set mark bit on each reachable block

= Sweep: Scan all blocks and free blocks that are not marked

root
VAN N

Beforemark | | | [| L] "1 [[11 [1]]

aftermark [T LT T T LT T TATTTTT] [markbitser

\4
Aftersweep |_| free | [« 1 ["[%] free | [| |
N~

Winter 2013 Memory Allocation il

University of Washington

Mark and Sweep (cont.)

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {

if ('is_ptr(p)) return; // do nothing if not pointer

if (markBitSet(p)) return; // check if already marked

setMarkBit (p) ; // set the mark bit

for (i=0; i < length(p); i++) // recursively call mark on
mark (p[i]) ; // all words in the block

return;

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) { // while not at end of heap
if markBitSet (p) // check if block is marked
clearMarkBit() ; // if so, reset mark bit
else if (allocateBitSet(p)) // if not marked, but allocated
free(p) ; // free the block
p += length(p); // adjust pointer to next block

Winter 2013 Memory Allocation Il

University of Washington

Conservative Mark & Sweep in C

= Would mark & sweep work in C?
" is_ptr() (previous slide) determines if a word is a pointer by
checking if it points to an allocated block of memory
® Butin C, pointers can point into the middle of allocated blocks (not so
in Java)
= Makes it tricky to find all allocated blocks in mark phase
ptr
header

}
L] [[]

= There are ways to solve/avoid this problem in C, but the resulting
garbage collector is conservative:

= Every reachable node correctly identified as reachable, but some
unreachable nodes might be incorrectly marked as reachable

Winter 2013 Memory Allocation Ii 9

University of Washington

Dereferencing Bad Pointers

m The classic scanf bug

int val;

scanf (“%d”, val);

m Will cause scanf to interpret contents of val as an
address!
= Best case: program terminates immediately due to segmentation fault

= Worst case: contents of val correspond to some valid read/write area
of virtual memory, causing scanf to overwrite that memory, with
disastrous and baffling consequences much later in program execution

Winter 2013 Memory Allocation Il 11

University of Washington

Memory-Related Perils and Pitfalls

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory

Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks

Failing to free blocks

Winter 2013 Memory Allocation Il 10

University of Washington

Reading Uninitialized Memory

m Assuming that heap data is initialized to zero

/* return y = Ax */

int *matvec(int **A, int *x) {
int *y = (int *)malloc(N * sizeof(int));
int i, j;

for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
y[il += A[i][3] * x[3j]’
}
}

return y;

Winter 2013 Memory Allocation il 12

University of Washington

Overwriting Memory

m Allocating the (possibly) wrong sized object

int **p;
p = (int **)malloc(N * sizeof(int));

for (i=0; i<N; i++) {
pli] = (int *)malloc(M * sizeof(int));

}

Winter 2013 Memory Allocation Il 13

University of Washington

Overwriting Memory

m Not checking the max string size

char s[8];
int i;

gets(s); /* reads “123456789” from stdin */

m Basis for classic buffer overflow attacks
® Your lab assignment #3

Winter 2013 Memory Allocation Il 15

University of Washington

Overwriting Memory

m Off-by-one error

int **p;
P = (int **)malloc(N * sizeof(int *));
for (i=0; i<=N; i++) {

pl[i] = (int *)malloc(M * sizeof(int));

}

Winter 2013 Memory Allocation Il 14

University of Washington

Overwriting Memory

= Misunderstanding pointer arithmetic

int *search(int *p, int wval) {

while (p && *p != val)
p += sizeof (int);

return p;

Winter 2013 Memory Allocation il 16

University of Washington

Overwriting Memory

m Referencing a pointer instead of the object it points to

int *getPacket (int **packets, int *size) {
int *packet;
packet = packets[0];
packets[0] = packets[*size - 1];
*size--; // what is happening here?
reorderPackets (packets, *size);
return (packet) ;

}

m ‘-’ and ‘*’ operators have same precedence and associate
from right-to-left, so -- happens first!

Winter 2013 Memory Allocation Il 17

University of Washington

Freeing Blocks Multiple Times

m Nasty!

x = (int *)malloc(N * sizeof(int));
<manipulate x>
free (x) ;

y = (int *)malloc(M * sizeof (int));
free (x) ;
<manipulate y>

m What does the free list look like?

X = (int *)malloc(N * sizeof(int));
<manipulate x>
free (x) ;
free (x) ;
Winter 2013 Memory Allocation Il 19

University of Washington

Referencing Nonexistent Variables

m Forgetting that local variables disappear when a function
returns

int *foo () {
int val;

return &val;

Winter 2013 Memory Alocation Il 18

University of Washington

Referencing Freed Blocks

m Evil!

X = (int *)malloc(N * sizeof(int));
<manipulate x>
free (x) ;

y = (int *)malloc(M * sizeof(int));
for (i=0; i<M; i++)
y[i]l = x[i]++;

Winter 2013 Memory Allocation il 20

University of Washington

Failing to Free Blocks (Memory Leaks)

m Slow, silent, long-term killer!

foo() {
int *x = (int *)malloc (N*sizeof (int));
return;
}
Winter 2013 Memory Allocation il 21

University of Washington

Dealing With Memory Bugs

m Conventional debugger (gdb)
= Good for finding bad pointer dereferences
" Hard to detect the other memory bugs

m Debuggingmalloc (UToronto CSRImalloc)

® Wrapper around conventional malloc

= Detects memory bugs atmalloc and free boundaries
= Memory overwrites that corrupt heap structures
= Some instances of freeing blocks multiple times
= Memory leaks

® Cannot detect all memory bugs
= Overwrites into the middle of allocated blocks
= Freeing block twice that has been reallocated in the interim
= Referencing freed blocks

Winter 2013 Memory Allocation Il 23

University of Washington

Failing to Free Blocks (Memory Leaks)

m Freeing only part of a data structure

struct list {
int val;
struct list *next;

}:

foo() {
struct list *head =
(struct list *)malloc(sizeof (struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>

free (head) ;
return;

}

Winter 2013 Memory Allocation Il 22

University of Washington

Dealing With Memory Bugs (cont.)

= Some malloc implementations contain checking code
= Linux glibc malloc: setenv MALLOC_CHECK_ _ 2
" FreeBSD: setenv MALLOC_OPTIONS AJR
m Binary translator: valgrind (Linux), Purify
= Powerful debugging and analysis technique
= Rewrites text section of executable object file
® Can detect all errors as debuggingmalloc
® Can also check each individual reference at runtime
= Bad pointers
= Overwriting

= Referencing outside of allocated block

Winter 2013 Memory Allocation il 24

