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Implicit Memory Allocation:
Garbage Collection

m Garbage collection: automatic reclamation of heap-allocated

The Hardwa re/Softwa re Interface storage—application never has to free

CSE351 Winter 2013 void foo() {
int *p = (int *)malloc(128);
return; /* p block is now garbage */

Memory Allocation Il m Common in functional languages, scripting languages, and

modern object oriented languages:
= Lisp, ML, Java, Perl, Mathematica

m Variants (“conservative” garbage collectors) exist for C and C++
= However, cannot necessarily collect all garbage
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Garbage Collection Classical GC Algorithms

Mark-and-sweep collection (McCarthy, 1960
m How does the memory allocator know when memory can be P ( . v, , )
freed? = Does not move blocks (unless you also “compact”)
® |n general, we cannot know what is going to be used in the future since it Reference counting (Collins, 1960)
depends on conditionals = Does not move blocks (not discussed)
= But, we can tell that certain blocks cannot be used if there are no . . .
ointers to them Copying collection (Minsky, 1963)
" Moves blocks (not discussed)

Generational Collectors (Lieberman and Hewitt, 1983)

m So the memory allocator needs to know what is a pointer and

what is not — how can it do this? ® Collection based on lifetimes
= Most allocations become garbage very soon
m We’ll make some assumptions about pointers: = So focus reclamation work on zones of memory recently allocated
= Memory allocator can distinguish pointers from non-pointers m For more information:
® All pointers point to the start of a block in the heap Jones and Lin, “Garbage Collection: Algorithms for Automatic

* Application cannot hide pointers Dynamic Memory”, John Wiley & Sons, 1996.
(e.g., by coercing them to an int, and then back again)
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Memory as a Graph

m We view memory as a directed graph
® Each allocated heap block is a node in the graph
= Each pointer is an edge in the graph

® Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, locations on the stack, global variables)
O reachable

Root nodes P ﬁ) C{
Not-reachable

Heap nodes
O O (garbage)
/
oY

A node (block) is reachable if there is a path from any root to that node

Non-reachable nodes are garbage (cannot be needed by the application)
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Assumptions For a Simple Implementation

m Application can use functions such as:
" new (n) : returns pointer to new block with all locations cleared
" read(b, i) : read location i of block b into register

= b[i]
" write(b,i,v): write vinto location i of block b
= b[i] = v
m Each block will have a header word
= b[-1]

m Functions used by the garbage collector:
® is_ptr(p) : determines whether p is a pointer to a block
" length(p) : returnslength of block pointed to by p, not including header
" get_roots() : returns all the roots
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Mark and Sweep Collecting

m Can build on top of malloc/free package

= Allocate using malloc until you “run out of space”
m When out of space:

= Use extra mark bit in the head of each block

® Mark: Start at roots and set mark bit on each reachable block

= Sweep: Scan all blocks and free blocks that are not marked
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Mark and Sweep (cont.)

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {

if ('is_ptr(p)) return; // do nothing if not pointer

if (markBitSet(p)) return; // check if already marked

setMarkBit (p) ; // set the mark bit

for (i=0; i < length(p); i++) // recursively call mark on
mark (p[i]) ; // all words in the block

return;

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) { // while not at end of heap
if markBitSet (p) // check if block is marked
clearMarkBit() ; // if so, reset mark bit
else if (allocateBitSet(p)) // if not marked, but allocated
free(p) ; // free the block
p += length(p); // adjust pointer to next block
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Conservative Mark & Sweep in C

= Would mark & sweep work in C?
" is_ptr() (previous slide) determines if a word is a pointer by
checking if it points to an allocated block of memory
® Butin C, pointers can point into the middle of allocated blocks (not so
in Java)
= Makes it tricky to find all allocated blocks in mark phase
ptr
header

}
L] [ [ ]

= There are ways to solve/avoid this problem in C, but the resulting
garbage collector is conservative:

= Every reachable node correctly identified as reachable, but some
unreachable nodes might be incorrectly marked as reachable
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Dereferencing Bad Pointers

m The classic scanf bug

int val;

scanf (“%d”, val);

m Will cause scanf to interpret contents of val as an
address!
= Best case: program terminates immediately due to segmentation fault

= Worst case: contents of val correspond to some valid read/write area
of virtual memory, causing scanf to overwrite that memory, with
disastrous and baffling consequences much later in program execution
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Memory-Related Perils and Pitfalls

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory

Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks

Failing to free blocks
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Reading Uninitialized Memory

m Assuming that heap data is initialized to zero

/* return y = Ax */

int *matvec(int **A, int *x) {
int *y = (int *)malloc( N * sizeof(int) );
int i, j;

for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
y[il += A[i][3] * x[3j]’
}
}

return y;
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Overwriting Memory

m Allocating the (possibly) wrong sized object

int **p;
p = (int **)malloc( N * sizeof(int) );

for (i=0; i<N; i++) {
pli] = (int *)malloc( M * sizeof(int) );

}
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Overwriting Memory

m Not checking the max string size

char s[8];
int i;

gets(s); /* reads “123456789” from stdin */

m Basis for classic buffer overflow attacks
® Your lab assignment #3
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Overwriting Memory

m Off-by-one error

int **p;
P = (int **)malloc( N * sizeof(int *) );
for (i=0; i<=N; i++) {

pl[i] = (int *)malloc( M * sizeof(int) );

}
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Overwriting Memory

= Misunderstanding pointer arithmetic

int *search(int *p, int wval) {

while (p && *p != val)
p += sizeof (int);

return p;
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Overwriting Memory

m Referencing a pointer instead of the object it points to

int *getPacket (int **packets, int *size) {
int *packet;
packet = packets[0];
packets[0] = packets[*size - 1];
*size--; // what is happening here?
reorderPackets (packets, *size);
return (packet) ;

}

m ‘-’ and ‘*’ operators have same precedence and associate
from right-to-left, so -- happens first!
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Freeing Blocks Multiple Times

m Nasty!

x = (int *)malloc( N * sizeof(int) );
<manipulate x>
free (x) ;

y = (int *)malloc( M * sizeof (int) );
free (x) ;
<manipulate y>

m What does the free list look like?

X = (int *)malloc( N * sizeof(int) );
<manipulate x>
free (x) ;
free (x) ;
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Referencing Nonexistent Variables

m Forgetting that local variables disappear when a function
returns

int *foo () {
int val;

return &val;
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Referencing Freed Blocks

m Evil!

X = (int *)malloc( N * sizeof(int) );
<manipulate x>
free (x) ;

y = (int *)malloc( M * sizeof(int) );
for (i=0; i<M; i++)
y[i]l = x[i]++;

Winter 2013 Memory Allocation il 20



University of Washington

Failing to Free Blocks (Memory Leaks)

m Slow, silent, long-term killer!

foo() {
int *x = (int *)malloc (N*sizeof (int));
return;
}
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Dealing With Memory Bugs

m Conventional debugger (gdb)
= Good for finding bad pointer dereferences
" Hard to detect the other memory bugs

m Debuggingmalloc (UToronto CSRImalloc)

® Wrapper around conventional malloc

= Detects memory bugs atmalloc and free boundaries
= Memory overwrites that corrupt heap structures
= Some instances of freeing blocks multiple times
= Memory leaks

® Cannot detect all memory bugs
= Overwrites into the middle of allocated blocks
= Freeing block twice that has been reallocated in the interim
= Referencing freed blocks

Winter 2013 Memory Allocation Il 23

University of Washington

Failing to Free Blocks (Memory Leaks)

m Freeing only part of a data structure

struct list {
int val;
struct list *next;

}:

foo() {
struct list *head =
(struct list *)malloc( sizeof (struct list) );
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>

free (head) ;
return;

}
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Dealing With Memory Bugs (cont.)

= Some malloc implementations contain checking code
= Linux glibc malloc: setenv MALLOC_CHECK_ _ 2
" FreeBSD: setenv MALLOC_OPTIONS AJR
m Binary translator: valgrind (Linux), Purify
= Powerful debugging and analysis technique
= Rewrites text section of executable object file
® Can detect all errors as debuggingmalloc
® Can also check each individual reference at runtime
= Bad pointers
= Overwriting

= Referencing outside of allocated block
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