University of Washington University of Washington

Implementation Issues

= How do we know how much memory to free given just a
pointer?
The Hardware/Software Interface

CSE351 Winter 2013 m How do we keep track of the free blocks?

m How do we pick a block to use for allocation (when many
Memory Allocation Il might fit)?

= What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

= How do we reinsert freed block into the heap?

Winter 2013 Memory Allocation 1 2

Knowing How Much to Free Keeping Track of Free Blocks
a Standard method m Method 1: Implicit list using length—links all blocks
= Keep the length of a block in the word preceding the block T~ T~ —
= This word is often called the header field or header ‘5] l l l [4| l l | 6 l l l l l lzl l

® Requires an extra word for every allocated block

m Method 2: Explicit list among the free blocks using pointers

(I TTT T I I T IT] o
110 s[A[[[l T el [[[[[217]

po =martoc() [[[T [[T s [[T 1 [T m Method 3: Segregated free list
= Different free lists for different size classes

block size data

reee) [[[T T T T T TTTTTTTTT] m Method 4: Blocks sorted by size

® Can use a balanced binary tree (e.g. red-black tree) with pointers
within each free block, and the length used as a key

Winter 2013 Memory Allocation I 3 Winter 2013 Memory Alocation If 4

University of Washington

o o . e.g. with 8-byte alignment,
Implicit Free Lists sizes look like:
00000000
m For each block we need: size, is-allocated? ggg%ggg
= Could store this information in two words: wasteful! 00011000
m Standard trick

= |f blocks are aligned, some low-order size bits are always 0 /
= |nstead of storing an always-0 bit, use it as a allocated/free flag
= When reading size, must remember to mask out this bit

1 word
size a a = 1: allocated block
a = 0: free block
Format of
allocated and payload size: block size
free blocks o
payload: application data
(all d blocks only)
optional
padding
Winter 2013 Memory Allocation I 5

University of Washington

*p gets the block header

Implicit List: Finding a Free Block |- &7 exracts the

) . allocated bit
m First fit: *p & -2 masks the allocated
= Search list from beginning, choose first free block that fits: bit, gets just the size
P = heap_start;
while ((p < end) && \\ not passed end
((*p & 1) || \\ already allocated
(*p <= len))) \\ too small
p=p+ (*p & -2); \\ goto next block

= Can take time linear in total number of blocks (allocated and free)
= |n practice it can cause “splinters” at beginning of list

m Next fit:
= Like first-fit, but search list starting where previous search finished
= Should often be faster than first-fit: avoids re-scanning unhelpful blocks
= Some research suggests that fragmentation is worse

m Best fit:
= Search the list, choose the best free block: fits, with fewest bytes left over
= Keeps fragments small—usually helps fragmentation
= Will typically run slower than first-fit

Winter 2013 Memory Allocation If 7

University of Washington

Implicit Free List Example

Sequence of blocks in heap: 2/0, 4/1, 8/0, 4/1 (size/allocated)

Start of heap

D Free word
o] Jan] T [eo] [T T T [T Jea[T T o] [] Atocatedword

. Allocated word

\/ unused

8 bytes = 2 word alignment

m 8-byte alignment
® May require initial unused word
® Causes some internal fragmentation

= One word (0/1) to mark end of list

Winter 2013 Memory Allocation 1 6

University of Washington

Implicit List: Allocating in Free Block

m Allocating in a free block: splitting

® Since allocated space might be smaller than free space, we might want
to split the block

4 4 6 2
p
addblock (p, 4)
4 4 4 2 2

void addblock (ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even
int oldsize = *p & -2; // mask out low bit
*p = newsize | 1; // set new length + allocated
if (newsize < oldsize)
* (p+tnewsize) = oldsize - newsize; // set length in remaining
} // part of block

Winter 2013 Memory Allocation Ii 8

University of Washington

Implicit List: Freeing a Block

m Simplest implementation:
= Need only clear the “allocated” flag
void free_block(ptr p) { *p = *p & -2 }
® But can lead to “false fragmentation”

N T N N
[[[Tal T T Tal T T I2] [2[]
:

free (p)

malloc(5) Oops!
There is enough free space, but the allocator won’t be able to find it

Winter 2013 Memory Allocation 9

University of Washington

Implicit List: Bidirectional Coalescing

m Boundary tags [Knuth73]
= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but requires extra space
® |mportant and general technique!

T T
Header — size a
a = 1: allocated block
Format of a = 0: free block
allocated and payload and . .
padding size: total block size
free blocks
payload: application data
Boundary tag —| size g (allocated blocks only)
(footer)

Winter 2013 Memory Allocation I 11

University of Washington

Implicit List: Coalescing

m Join (coalesce) with next/previous blocks, if they are free
= Coalescing with next block

[al T T Tal' T T Tal T[T [2] [2]])
1 logically
free (p) gone
void free block (ptr p) {
*p = *p & -2; // clear allocated bit
next = p + *p; // f£ind next block
if ((*next & 1) == 0)
*p = *p + *next; // add to this block if
} // not allocated
= But how do we coalesce with the previous block?
Winter 2013 Memory Allocation i 10

University of Washington

Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4
allocated allocated free free
block being ___
fr
eed allocated free allocated free

Winter 2013 Memory Alocation If 12

University of Washington

Constant Time Coalescing

mi |1 mi |1 mi |1 mi_ |1
mi |1 ml |1 ml |1 mi |1
n ‘ 1 n ‘ 0 n ‘ 1 n+m2 ‘ 0
— —_—
n [1 n [o n [1
m2 |1 m2 |1 m2 |0
m2 ‘ 1 m2 ‘ 1 m2 ‘ 0 n+m2 ‘ 0
mi_ [0 ntmi_ | 0 mi |0 n+mi+m2 | 0
mi__Jo miL |0
n l 1 n ‘ 1
- .
n [1 ntml_ |0 n [1
m2_ |1 m2_ |1 m2__ |0
me_ |1 ma_ [1 m2 |0 n+ml+m2 | 0

Winter 2013 Memory Allocation 13

University of Washington

Keeping Track of Free Blocks

m Method 1: Implicit free list using length—links all blocks

LTI [e T Tel T T [[217

m Method 2: Explicit free list among the free blocks using pointers

/\
[sI A [[al TTTel [[T [2[]

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Winter 2013 Memory Allocation If 15

University of Washington

Implicit Free Lists: Summary

m Implementation: very simple
m Allocate cost:
= linear time (in total number of heap blocks) worst case
m Free cost:
® constant time worst case
= even with coalescing
= Memory utilization:
= will depend on placement policy
= First-fit, next-fit or best-fit

m Not used in practice formalloc () /free () because of
linear-time allocation

= used in some special purpose applications

m The concepts of splitting and boundary tag coalescing are
general to all allocators

Winter 2013 Memory Allocation Ii 14

University of Washington

Explicit Free Lists

Allocated block: Free block:
size I a size a
next
payload and prev
padding

size a size a

(same as implicit free list)

m Maintain list(s) of free blocks, rather than implicit list of all
blocks

" The “next” free block could be anywhere in the heap

= So we need to store forward/back pointers, not just sizes
= Luckily we track only free blocks, so we can use payload area for pointers
= Still need boundary tags for coalescing

Winter 2013 Memory Alocation If 16

University of Washington

Explicit Free Lists
m Logically (doubly-linked lists):
A e [¢

m Physically: blocks can be in any order

Forward (next) links

[T AR T <] [e Imals]t], T4]
K c ~—

Back (prev) links

Winter 2013 Memory Allocation I 17

University of Washington

Freeing With Explicit Free Lists

m Insertion policy: Where in the free list do you put a newly
freed block?

= LIFO (last-in-first-out) policy
= Insert freed block at the beginning of the free list
= Pro: simple and constant time

= Con: studies suggest fragmentation is worse than address ordered

= Address-ordered policy

= Insert freed blocks so that free list blocks are always in address
order:

addr(prev) < addr(curr) < addr(next)
= Con: requires linear-time search when blocks are freed
= Pro: studies suggest fragmentation is lower than LIFO

Winter 2013 Memory Allocation Il

19

University of Washington

Allocating From Explicit Free Lists

conceptual graphic
Before

.

G
» O

° 0
After ’% (with splitting)

) |

= malloc(..)

Winter 2013 Memory Allocation i 18

University of Washington

Freeing With a LIFO Policy (Case 1)

conceptual graphic
Before

free?:)
Root/llllllllllllh@]ﬂ

m Insert the freed block at the root of the list

After

Root LT ool [FTTT]

Winter 2013 Memory Alocation If 20

University of Washington

Freeing With a LIFO Policy (Case 2)

conceptual graphic
® free sz)

Root IIIIIIIIIIII\‘LIJQ

Before

y ———

[o[6]

m Splice out predecessor block, coalesce both memory blocks,
and insert the new block at the root of the list

After

Root I—»F;f!ﬁ—ﬂ—\—ﬂ—m j % o

Winter 2013 Memory Allocation Il

University of Washington

Freeing With a LIFO Policy (Case 4)

conceptual graphic
. free}:” ol

Root 6] l\io

Before

m Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list

After

Root l———>{eT0[[[[[[[[[]

Memory Allocation Il

Winter 2013

23

University of Washington

Freeing With a LIFO Policy (Case 3)

conceptual graphic
Before

free?:)w
Rootl/illllllluil\@g

[o]8]

m Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

After

T%\
Root CEEE e [[]

Winter 2013

Memory Allocation Il

22

University of Washington

Explicit List Summary

m Comparison to implicit list:
= Allocate is linear time in number of free blocks instead of all blocks
= Much faster when most of the memory is full
= Slightly more complicated allocate and free since needs to splice blocks
in and out of the list
= Some extra space for the links (2 extra words needed for each block)

= Possibly increases minimum block size, leading to more internal
fragmentation

m Most common use of explicit lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for
different types of objects

Winter 2013 Memory Allocation Il

24

University of Washington

Keeping Track of Free Blocks

m Method 1: Implicit list using length—links all blocks

LT T T Tal T el [[T [[2[7]

m Method 2: Explicit list among the free blocks using pointers

/_\.
IA T [Tal T T el [[T [2]]

Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Winter 2013 Memory Allocation I 25

University of Washington

Seglist Allocator

m Given an array of free lists, each one for some size class

m To allocate a block of size n:
= Search appropriate free list for block of size m >n
® |f an appropriate block is found:
= Split block and place fragment on appropriate list (optional)
= |f no block is found, try next larger class
® Repeat until block is found

m If no block is found:
= Request additional heap memory from OS (using sbrk ())
= Allocate block of n bytes from this new memory
= Place remainder as a single free block in largest size class

Winter 2013 Memory Allocation If 27

University of Washington

Segregated List (Seglist) Allocators

m Each size class of blocks has its own free list

e[JH[HITHITF

s [T T ITTHITIT -
ss [T TTTTTHTITITTF
st [[[T TTTTTITIITTT]

m Often have separate classes for each small size
m For larger sizes: One class for each two-power size

Winter 2013 Memory Allocation i 26

Seglist Allocator (cont.)

m To free a block:
= Coalesce and place on appropriate list (optional)

m Advantages of seglist allocators
= Higher throughput
= log time for power-of-two size classes
= Better memory utilization

= First-fit search of segregated free list approximates a best-fit search
of entire heap.

= Extreme case: Giving each block its own size class is equivalent to
best-fit.

Winter 2013 Memory Alocation If 28

University of Washington University of Washington

Summary of Key Allocator Policies More Info on Allocators
m Placement policy:
" First-fit, next-fit, best-fit, etc. m D. Knuth, “The Art of Computer Programming”, 2™ edition,
= Trades off lower throughput for less fragmentation Addison Wesley, 1973
" Observation: segregated free lists approximate a best fit placement = The classic reference on dynamic storage allocation
policy without having to search entire free list
m Splitting policy: m Wilson et al, “Dynamic Storage Allocation: A Survey and
= When do we go ahead and split free blocks? Critical Review”, Proc. 1995 Int’l Workshop on Memory
® How much internal fragmentation are we willing to tolerate? Management, Kinross, Scotland, Sept, 1995.

= Comprehensive survey

m Coalescing policy:
= Available from CS:APP student site (csapp.cs.cmu.edu)

" Immediate coalescing: coalesce each time free () is called

= Deferred coalescing: try to improve performance of free () by
deferring coalescing until needed. Examples:

= Coalesce as you scan the free list formalloc ()
= Coalesce when the amount of external fragmentation reaches
some threshold

Winter 2013 Memory Allocation i 29 Winter 2013 Memory Allocation 30

