University of Washington

The Hardware/Software Interface
CSE351 Winter 2013

Memory Allocation |



University of Washington

Roadmap
C: Java:
car *c = malloc(sizeof(car)) Car ¢ = new Car();

c->miles

c->gals = 17;

= 100;

c.setMiles (100) ;
c.setGals (17) ;

Data & addressing
Integers & floats
Machine code & C
x86 assembly
programming
Procedures &
stacks

float mpg = get mpg(c); float mpg =
freel(c) ; — c.getMPG () ; Arrays & structs
Y — Memory & caches
Assembly get mpg: Processes
language: pushq  %rbp Virtual memory
movq R Memory allocation
popq 3rbp Javavs. C
ret $
Machine 0111010000011000
de: 100011010000010000000010
code: 1000100111000010
110000011111101000011111
Computer

system:

Winter 2013

Memory Allocation |



University of Washington

Memory Allocation Topics

m Dynamic memory allocation
= Size/number of data structures may only be known at run time
"= Need to allocate space on the heap
"= Need to de-allocate (free) unused memory so it can be re-allocated

m Implementation
= Implicit free lists

= Explicit free lists — subject of next programming assignment
= Segregated free lists

m Garbage collection
m Common memory-related bugs in C programs

Winter 2013 Memory Allocation | 3



University of Washington

Dynamic Memory Allocation

m Programmers use Application
dynamic memory Dynamic Memory Allocator
allocators (such as Heap
malloc) to acquire VM
at run time.
= For data structures whose
.. User stack
size is only known at ‘
runtime.
. f ,__Top of heap
m Dynamic memory (brk ptr)

Heap (viamalloc)

allocators manage an

area of process virtual
memory known as the Initialized data (.data)
heap. Program text (. text)

Uninitialized data (.bss)

0

Winter 2013 Memory Allocation |



University of Washington

Dynamic Memory Allocation

m Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free

= Allocator requests space in heap region; VM hardware and kernel
allocate these pages to the process

= Application objects are typically smaller than pages, so the allocator
manages blocks within pages
m Types of allocators
= Explicit allocator: application allocates and frees space
= E.g. mallocand freeinC
= Implicit allocator: application allocates, but does not free space
= E.g. garbage collection in Java, ML, and Lisp

Winter 2013 Memory Allocation | 5



The malloc Package

#include <stdlib.h>

void *malloc(size t size)
= Successful:

= Returns a pointer to a memory block of at least size bytes
(typically) aligned to 8-byte boundary

» [f size == 0, returns NULL
= Unsuccessful: returns NULL and sets errno

void free (void *p)
= Returns the block pointed at by p to pool of available memory
= p must come from a previous call tomalloc or realloc

Other functions
" calloc: Version of malloc that initializes allocated block to zero.
" realloc: Changes the size of a previously allocated block.
= sbrk: Used internally by allocators to grow or shrink the heap.

Winter 2013 Memory Allocation | 6



Malloc Example

void foo(int n, int m) {
int 1, *p;

/* allocate a block of n ints */
p = (int *)malloc(n * sizeof(int));
if (p == NULL) {
perror ("malloc") ;
exit (0) ;
}
for (i=0; i<n; i++) p[i] = i;

/* add space for m ints to end of p block */

if ((p = (int *)realloc(p, (n+m) * sizeof(int))) == NULL) {
perror ("realloc") ;
exit (0) ;

}

for (i=n; i < n+m; i++) p[i] = i,

/* print new array */
for (i=0; i<n+m; i++)
printf ("$d\n", pl[i]);

free(p); /* return p to available memory pool */

}

Winter 2013 Memory Allocation | 7




University of Washington

Assumptions Made in This Lecture

m Memory is word addressed (each word can hold a pointer)
= block size is a multiple of words

\ Y J Q ,_I
Allocated block Free block
(4 words) (3 words) Free word

Allocated word

Winter 2013 Memory Allocation | 8



University of Washington

Allocation Example

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)

p4 = malloc(2)

Winter 2013 Memory Allocation | 9



University of Washington

How are going to implement that?!?

m /deas?

Winter 2013 Memory Allocation | 10



University of Washington

Constraints

m Applications
= Canissue arbitrary sequence of malloc() and free() requests
= free() requests must be made only for a previously malloc()’'d block

m Allocators
= Can’t control number or size of allocated blocks
= Must respond immediately to malloc() requests
= j.e., can’t reorder or buffer requests
= Must allocate blocks from free memory
= j.e., blocks can’t overlap
= Must align blocks so they satisfy all alignment requirements
= 8 byte alignment for GNU malloc (1ibe malloc) on Linux boxes
= Can’t move the allocated blocks once they are malloc()’d
= j.e., compaction is not allowed. Why not?

Winter 2013 Memory Allocation | 11



University of Washington

Performance Goal: Throughput

m Given some sequence of malloc and free requests:
Ry, R, ... Ry ..., R,

m Goals: maximize throughput and peak memory utilization
"= These goals are often conflicting

m Throughput:

= Number of completed requests per unit time
= Example:

= 5,000 malloc () callsand 5,000 £free () callsin 10 seconds
= Throughput is 1,000 operations/second

Winter 2013 Memory Allocation | 12



University of Washington

Performance Goal: Peak Memory Utilization

m Given some sequence of malloc and free requests:
Ry, R, ... Ry ..., R,

m Def: Aggregate payload P,
" malloc (p) resultsin a block with a payload of p bytes

= After request R, has completed, the aggregate payload P, is the sum of
currently allocated payloads

m Def: Current heap size = H,
= Assume H, is monotonically nondecreasing
= Allocator can increase size of heap using sbrk ()

m Def: Peak memory utilization after k requests
" Uc=(maxy P;) / H,
® Goal: maximize utilization for a sequence of requests.
= Why is this hard? And what happens to throughput?

Winter 2013 Memory Allocation | 13



University of Washington

Fragmentation

m Poor memory utilization is caused by fragmentation
= jnternal fragmentation
= external fragmentation

Winter 2013 Memory Allocation | 14



University of Washington

Internal Fragmentation

m For a given block, internal fragmentation occurs if payload is smaller than

block size
block
A
o N
Internal Internal
fragmentation BEEER fragmentation
m Caused by

= overhead of maintaining heap data structures (inside block, outside payload)
= padding for alignment purposes

= explicit policy decisions (e.g., to return a big block to satisfy a small request)
why would anyone do that?

m Depends only on the pattern of previous requests
= thus, easy to measure

Winter 2013 Memory Allocation | 15



University of Washington

External Fragmentation

m Occurs when there is enough aggregate heap memory, but no
single free block is large enough

malloc (4)

o
=
I

o
N
I

malloc (5)

p3 = malloc(6)

free (p2)

p4 = malloc(6) Oops! (what would happen now?)

m Depends on the pattern of future requests
" Thus, difficult to measure

Winter 2013 Memory Allocation | 16



