University of Washington University of Washington

Data & addressing
Roadmap Integers & floats
c Java: Machine code & C
. . x86 assembly
car *c = malloc(sizeof (car)); Car ¢ = new Car(); programming
c->miles = 100; c.setMiles (100) ; Procedures &
c->gals = 17; c.setGals (17) ;
stacks
The Hardware/Software Interface float mpg = get_mpg(c) ; float mpg =
) free(c) ; c.getMPG () ; Arrays & structs
CSE351 Winter 2013 ~ —— Memory & caches
Assembly | get_mpg: Processes
language: pushq %rbp Virtual memory
guag movq Ee=c e Memory allocation
. popq 4rbp Javavs. C
Virtual Memory | ret ¥ os:
Machine 0111010000011000 1 | f
de: 100011010000010000000010
code: 1000100111000010 [A
110000011111101000011111 Windows 8 Mac L
'
v v
Computer p
system:
Winter 2013 Virtaal Memory T 2
Virtual Memory (VM) Processes
Overview and motivation m Definition: A process is an instance of a running program
VM as tool for caching ® One of the most important ideas in computer science

. - “ P— ”
Address translation Not the same as “program” or “processor

VM as tool for memory management

. m Pr rovi h program with two key abstractions:
VM as tool for memory protection ocess provides each progra t o key abs °
= Logical control flow

= Each process seems to have exclusive use of the CPU
= Private virtual address space

= Each process seems to have exclusive use of main memory

m How are these illusions maintained?
= Process executions interleaved (multi-tasking) — last time
= Address spaces managed by virtual memory system — today!

Winter 2013 Virtual Memory | 3 Winter 2013 Virtual Memory | 4

University of Washington

Virtual Memory (Previous Lectures)

m Programs refer to virtual memory addresses FFeeeeF
" movl (%ecx),%eax

= Conceptually memory is just a very large array of bytes

® Each byte has its own address

= System provides address space private to particular “process”
m Allocation: Compiler and run-time system

" Where different program objects should be stored

= All allocation within single virtual address space

What problems does virtual memory solve?

Winter 2013 Virtual Memory | 5

University of Washington

Problem 2: Memory Management

Physical main memory

Process 1

stack
Process 2 heap Wit

at goes
Process 3 X . text where?
.data
Process n
Winter 2013 Virtual Memory | 7

University of Washington

Problem 1: How Does Everything Fit?

64-bit addresses: Physical main memory:
16 Exabyte Few Gigabytes
2 =

And there are many processes

Winter 2013 Virtual Memory | 6

University of Washington

Problem 3: How To Protect

Physical main memory

Process i

Process j

Problem 4: How To Share?

Physical main memory

Process i \
Process j /

Winter 2013 Virtual Memory | 8

University of Washington

How would you solve those problems?

Winter 2013 Virtual Memory | 9

University of Washington

Indirection

= Indirection: the ability to reference something using a name, reference, or
container instead the value itself. A flexible mapping between a name and
a thing allows changing the thing without notifying holders of the name.

m Without Indirection Name —D Thing

m With Indirection Name DTh'
ing

m Examples:
Domain Name Service (DNS) name->IP address, phone system (e.g., cell
phone number portability), snail mail (e.g., mail forwarding), 911 (routed
to local office), DHCP, call centers that route calls to available operators,
etc.

Winter 2013 Virtual Memory | 11

University of Washington

Indirection

= “Any problem in computer science can be solved by adding another level
of indirection”

m Without Indirection ~ Name DThing

= With Indirection Name — D
Thing

Winter 2013 Virtual Memory | 10

University of Washington

Solution: Level Of Indirection

Virtual memory

Process 1

Physical memory

mapping

Virtual memory

Process n

m Each process gets its own private virtual address space
m Solves the previous problems

Winter 2013 Virtual Memory | 12

University of Washington

Address Spaces

m Virtual address space: Set of N = 2" virtual addresses
{0,1,2,3,..,N-1}

m Physical address space: Set of M = 2™ physical addresses (n > m)
{0,1,2,3,.., M1}

m Every byte in main memory:
one physical address; zero, one, or more virtual addresses

Winter 2013 Virtual Memory | 13

University of Washington

A System Using Physical Addressing

Main memory

Physical address

CPU

4

ugUHBIRD
[—

Data word

m Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames

Winter 2013 Virtual Memory | 15

University of Washington

Mapping

Physical
Memory

A virtual address can be
mapped to either
physical memory or disk.

Virtual Address

Winter 2013 Virtual Memory | 14

University of Washington

A System Using Virtual Addressing

Main memory

0:

CPU Chip 1:
Virtual address Physical address 2

(vA) (PA) 3:

CPU 2 4:
4100 5:

6:

7:

8:

Data word

m Used in all modern desktops, laptops, servers
m One of the great ideas in computer science

Winter 2013 Virtual Memory | 16

University of Washington University of Washington

VM and the Memory Hierarchy Memory Hierarchy: Core 2 Duo Not drawn to scale

. . . L1/L2 cache: 64 B blocks
m Think of virtual memory as an array of N = 2" contiguous

bytes stored on a disk

. . . ~4 MB ~4 GB ~500 GB
m Then physical main memory (DRAM) is used as a cache for o
the virtual memory array |-cache
- L2 .
® The cache blocks are called pages (size is P = 2P bytes) o] Main
32KB ch Memory
Virtual memory Physical memory 11 cache
CPU | Reg
VP 0 [unallocated | D-cache
VP 1 | Cached Empty PPO
Cached_ \ P Throughput: 16 B/cycle 8 B/cycle 2 B/cycle 1 B/30 cycles
Unallocated Empty Latency: 3 cycles 14 cycles 100 cycles millions D | s k
Cached
lcj:::::e" >< Empty J— Miss penalty (latency): 33x
VP 2n-1 [Uncached | M

Virtual pages (VPs) Physical pages (PPs) Miss penalty (latency): 10,000x
stored on disk cached in DRAM

Winter 2013 Virtual Memory | 17 Winter 2013 Virtual Memory |

University of Washington University of Washington

DRAM Cache Organization DRAM Cache Organization

m DRAM cache organization driven by the enormous miss m DRAM cache organization driven by the enormous miss
penalty penalty
® DRAM is about 10x slower than SRAM ® DRAM is about 10x slower than SRAM
= Disk is about 10,000x slower than DRAM = Disk is about 10,000x slower than DRAM
= (for first byte; faster for next byte) = (for first byte; faster for next byte)
m Consequences? m Consequences
= Block size? = |arge page (block) size: typically 4-8 KB, sometimes 4 MB
= Associativity? = Fully associative
= Write-through or write-back? = Any VP can be placed in any PP

= Requires a “large” mapping function — different from CPU caches
= Highly sophisticated, expensive replacement algorithms

= Too complicated and open-ended to be implemented in hardware
= Write-back rather than write-through

Winter 2013 Virtual Memory | 19 Winter 2013 Virtual Memory | 20

University of Washington

Indexing into the “DRAM Cache”

CPU Chip
Virtual address
(VA)
CPU
4100

Main memory

Physical address
(PA)
4

NOURWNRQ

Data word

How do we perform the VA -> PA translation?

Winter 2013

Virtual Memory | 21

University of Washington

Address Translation With a Page Table

Page table address
for process

Page table
Valid __ Physical page number (PPN)

Virtual address (VA)
Page table
base register — Virtual page number (VPN) | Virtual page offset (VPO) |
(PTBR)

Valid bit = 0:

page not in memory €—

(page fault)

In most cases, the hardware
(the MMU) can perform this
translation on its own,

without software assistance

Winter 2013

| Physical page number (PPN) | Physical page offset (PPO) |
Physical address (PA)

Virtual Memory | 23

University of Washington

Address Translation: Page Tables

m A page table (PT) is an array of page table entries (PTEs) that
maps virtual pages to physical pages.

Physical memory

Physical page (DRAM)
number or
Valid disk address VP PPO
PTEO [0 null z::
1 — vPa PP3
1 «—
0 e
1 .
0 null A Virtual memory
0 . Sl (disk)
Pre7]. I—
Memory resident "~ AN
P . T]
(DRAM) .
p
How many page tables are in the system? \
One per process

22

University of Washington

Page Hit

m Page hit: reference to VM byte that is in physical memory

Physical page (DRAM)
number or
Valid disk address z: ; PPO
PTEO| 0 n:ll/ X
1
1 — VP4 PP3
0 L3
1 —=.
0 null A Virtual memory
0 - . (disk)
Prerla 2

-
Memory resident *>. s,

page table S

. T]
(DRAM) T]

Winter 2013 Virtual Memory | 24

University of Washington

Page Fault

m Page fault: reference to VM byte that is NOT in physical

memory
Physical Physical memory
Virtual address ysical page (DRAM)
number or
Valid disk address VP1 PPO
PTEO 0 null e
1 VP7
VP4 PP3
1 -—
0 e
1 .
0 null A Virtual memory
0 o Sso (disk)
<
Memory resident \\x\ ‘\x\ _m
oA
(DRAM) ~.. VP3
-
What happens when a page
[we]
fault occurs? VP6
Winter 2013 Virtual Memory | 25

University of Washington

Handling Page Fault

m Page miss causes page fault (an exception)

Physical memory

Physical page
Virtual address number or (DRAM)
Valid disk address x: : PPO
PTEO| 0 null oh
1 —
VP4 PP3
1 —
0 e
1 s
0 null A Virtual memory
0 [Sso (disk)
~ ~
PTE7[1 « _ . I
Memory resident \\x\ ‘\\\ VP2
page table So
(DRAM) ~o VP3

S VP4
~

VP 6

vP7

’

Winter 2013 Virtual Memory | 27

University of Washington

Fault Example: Page Fault

int a[1000];
m User writes to memory location ‘;‘ai“ 0
m That portion (page) of user’'s memory a[500] = 13;
is currently on disk }
l 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10
User Process os

| exception: page fault

movl

' Create page and

returns load into memory

m Page handler must load page into physical memory
m Returns to faulting instruction: mov is executed again!
m Successful on second try

Winter 2013 Virtual Memory | 26

University of Washington

Handling Page Fault

m Page miss causes page fault (an exception)
m Page fault handler selects a victim to be evicted (here VP 4)

Physical page
Virtual address number or (DRAM)
Valid disk address z:: PPO
PTEO| O null Vo
1 —
VP4 PP3
1 —
0 e
1 3
0 null A Virtual memory
0 [S (disk)
< ~
PrE7la LN I
Memory resident “s s
page table .
(DRAM) \\\ __VP3
-
~

Winter 2013 Virtual Memory | 28

Handling Page Fault

m Page miss causes page fault (an exception)
m Page fault handler selects a victim to be evicted (here VP 4)

Physical page
Virtual address number or (DRAM)
Valid disk address x: ; PPO
PTEO| 0 null oo
i ; vp3 PP3
1 —
0 [N
0 null_~ Virtual memory
0 NOZAI N (disk)
<
Memory resident ~. |~~~
page table Sso \\
(DRAM) \\\ ~ __VP3
“
N
Winter 2013 Virtual Memory | 29

Why does it work?

Winter 2013 Virtual Memory | 31

Handling Page Fault

m Page miss causes page fault (an exception)
m Page fault handler selects a victim to be evicted (here VP 4)
m Offending instruction is restarted: page hit!

Physical page
Virtual address number or (DRAM)
Valid disk address z: ; PPO
PTEO| 0 null %)
i :; vP3 PP3
1 —
0 .
0 null_~~ Virtual memory
0 o ke (disk)
PTETLL LN N
Memory resident Sso \x\
page table AN \\\
(DRAM) \\\ ~ __VPS
Winter 2013 Virtual Memory | 30

Why does it work? Locality

m Virtual memory works well because of locality
= Same reason that L1 /L2 / L3 caches work

m The set of virtual pages that a program is “actively” accessing
at any point in time is called its working set
® Programs with better temporal locality will have smaller working sets

m If (working set size < main memory size):
= Good performance for one process after compulsory misses

m If (SUM(working set sizes) > main memory size):
= Thrashing: Performance meltdown where pages are swapped (copied)
in and out continuously

Winter 2013 Virtual Memory | 32

