University of Washington

The Hardware/Software Interface
CSE351 Winter 2013

Processes

University of Washington

What is a process?

m Why are we learning about processes?
® Processes are another abstraction in our computer system — the
process abstraction provides an interface between the program and the
underlying CPU + memory.
m What do processes have to do with exceptional control flow
(previous lecture)?

= Exceptional control flow is the mechanism that the OS uses to enable
multiple processes to run on the same system.

m What is a program? A processor? A process?

Winter 2013 Processes 3

University of Washington

Roadmap
C:

Java:

c->miles = 100
c->gals = 17;

car *c = malloc (sizeof (car));

Car c = new Car();
c.setMiles (100) ;
c.setGals (17) ;

Data & addressing
Integers & floats
Machine code & C
x86 assembly
programming
Procedures &
stacks

float mpg = get mpg(c); float mpg = A & struct
free(c) ; c.getMPG() ; Mrrays ;ruc;
~ — emory & caches
Assembly get_mpg: Exceptions &
. pushqg %$rbp processes
language: movq Ee=c e Virtual memory
popq 4rbp ;VIemorycaIIocatlon
ret ava vs.
1 0s:
A 4
Machine 0111010000011000 -- '
de: 100011010000010000000010
code: 1000100111000010 [A
110000011111101000011111 Windows 8 Mac Ol
'
[v
Computer
system:
Winter 2013 Frocewies 2
University of Washington

m Definition: A process is an instance of a running program
® One of the most important ideas in computer science
" Not the same as “program” or “processor”

Process provides each program with two key abstractions:
= Logical control flow
= Each process seems to have exclusive use of the CPU
= Private virtual address space
= Each process seems to have exclusive use of main memory

Why are these illusions important?

How are these illusions maintained?
= Process executions interleaved (multi-tasking)

= Address spaces managed by virtual memory system — next course topic

Winter 2013 Processes 4

University of Washington University of Washington

Concurrent Processes User View of Concurrent Processes
m Two processes run concurrently (are concurrent) if their m Control flows for concurrent processes are physically disjoint
instruction executions (flows) overlap in time in time

m Otherwise, they are sequential = CPU only executes instructions for one process at a time
m Examples: m However, we can think of concurrent processes as executing

= Concurrent: A&B,A&C in paraIIeI

= Sequential: B& C

Process A Process B Process C
Process A Process B Process C
| time 1
time [
i
1
Winter 2013 Processes 5 Winter 2013 Processes 6

Context Switching Creating New Processes & Programs
m Processes are managed by a shared chunk of OS code m fork-exec model:

called the kernel = fork () creates a copy of the current process

= Important: the kernel is not a separate process, but rather runs as part = execve () replaces the current process’ code & address space with
of a user process the code for a different program
m Control flow passes from one process to another via a context
switch... (how?)
Process A

m fork () and execve () are system calls

= Note: process creation in Windows is slightly different from Linux’s fork-
exec model

Process B

user code

kernel code } context switch m Other system calls for process management:

time user code " getpid()
kernel code } context switch " exit()
user code " wait() /waitpid()

Winter 2013 7 Winter 2013 Processes 8

University of Washington

fork: Creating New Processes

m pid t fork(void)
= creates a new process (child process) that is identical to the calling
process (parent process)
® returns 0 to the child process

= returns child’s process ID (pid) to the parent process

pid_t pid = fork();
if (pid == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n");

}

m fork is unique (and often confusing) because it is called once
but returns twice

Winter 2013 Processes 9

University of Washington

Fork Example

m Parent and child both run the same code
= Distinguish parent from child by return value from fork ()
® Which runs first after the £ork () is undefined

m Start with same state, but each has a private copy
® Same variables, same call stack, same file descriptors...

void forkl ()
{
int x = 1;
pid_t pid = fork();
if (pid == 0) {
printf("Child has x = %d\n", ++x);
} else {
printf ("Parent has x = %d\n", --x);
}
printf ("Bye from process %d with x = %d\n", getpid(), x);

Winter 2013 Processes 11

Understanding fork

Process n

Child Process m

University of Washington

pid_t pid = fork();
if (pid == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n");
}

pid_t pid = fork();
if (pid == 0) {
printf("hello from
} else {
printf("hello from
}

child\n") ;

parent\n") ;

pid_t pid = fork();
if (pid == 0) {

pid=m printf("hello from child\n");

} else {
printf ("hello from parent\n");
}

pid_t pid = fork();
if (pid == 0) {
printf("hello from
} else {
printf("hello from
}

child\n") ;

parent\n") ;

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

» printf("hello from parent\n");

}

pid_t pid = fork();
if (pid == 0) {
printf ("hello from
} else {
printf ("hello from

}

child\n") ;

parent\n") ;

hello from parent

Winter 2013

Fork-Exec

m fork-exec model:

Which one is first?

Processes

= fork () creates a copy of the current process

hello from child

10

University of Washington

= execve () replaces the current process’ code & address space with
the code for a different program

= There is a whole family of exec calls — see exec(3) and execve(2)

// Example arguments: path="/usr/bin/ls”,
// argv[0]="/usr/bin/ls”, argv[l]="-ahl", argv[2]=NULL
void fork exec(char *path, char *argv[])
{
pid_t pid = fork();
if (pid '= 0) {
printf ("Parent: created a child %d\n”, pid);
} else {
printf ("Child: exec-ing new program now\n") ;
execv (path, argv);
}
printf ("This line printed by parent only!\n");

}

Winter 2013 Processes 12

University of Washington

Exec-ing a new program

Stack
Very high-level diagram of what
happens when you run the
Heap command ”1s” in a Linux shell:
Data

Code: /usr/bin/bash

fork (): l\
parent child

Stack
Stack
exec():
—_—
Heap
Data Data
Code: /usr/bin/bash Code: /usr/bin/Is
Winter 2013 Processes 13

University of Washington

exit: Ending a process

m void exit(int status)
= Exits a process
= Status code: 0 is used for a normal exit, nonzero for abnormal exit

" atexit () registers functions to be executed upon exit

void cleanup (void) {
printf ("cleaning up\n") ;

}

void fork6() {
atexit (cleanup) ;
fork () ;
exit (0) ;

Winter 2013 Processes 15

University of Washington

execve: Loading and Running Programs

N Stack bottom
) Null-terminated
m int execve(env var strings
P
char *filename, Null-terminated
char *argvl[], cmd line arg strings
char *envp[] |
) envp[n] == NULL
m Loads and runs in current process: envp[n-1]
® Executable filename '"[]
. . envp[O
® With argument list ar
g_ .gv . argv[argc] == NULL
® And environment variable list envp argvlarge-1]
= Env. vars: “name=value” strings
(e.g. “PWD=/homes/iws/pjh”) argv[0]
m execve does not return (unless error) Linker vars
. envp
m Overwrites code, data, and stack atav
= Keeps pid, open files, a few other items argc
Stack frame for
Winter 2013 Processes main Stack top 14

University of Washington

Zombies

m ldea
® When process terminates, it still consumes system resources

= Various tables maintained by OS
® Called a “zombie”
= A living corpse, half alive and half dead
m Reaping
= Performed by parent on terminated child
® Parent is given exit status information
= Kernel discards process
m What if parent doesn’t reap?
= |f any parent terminates without reaping a child, then child will be
reaped by init process (pid == 1)
= But in long-running processes we need explicit reaping
= e.g., shells and servers

Winter 2013 Processes 16

University of Washington

wait: Synchronizing with Children

m int wait(int *child status)
= Suspends current process (i.e. the parent) until one of its children
terminates
® Return value is the pid of the child process that terminated
= On successful return, the child process is reaped

" Ifchild_status != NULL, then the int that it points to will be set
to a status indicating why the child process terminated

= There are special macros for interpreting this status — see wait(2)

m If parent process has multiple children, wait () will return
when any of the children terminates
" waitpid () can be used to wait on a specific child process

Winter 2013 Processes 17

University of Washington

Process management summary

= fork gets us two copies of the same process (but fork ()
returns different values to the two processes)
= execve has a new process substitute itself for the one that
called it
= Two-process program:
= First fork ()
= if (pid == 0) { //child code } else { //parent code }
= Two different programs:
» First fork ()
= if (pid == 0) { execve () }else {//parent code }
= Now running two completely different programs
= wait /waitpid used to synchronize parent/child execution
and to reap child process

Winter 2013 Processes 19

University of Washington

wait Example

void fork_wait() {
int child status;
pid t child pid;

if (fork() == 0) {
printf ("HC: hello from child\n");
} else {
child pid = wait(&child status); CT Bye
printf ("CT: child %d has terminated\n”,
child pid);

HC Bye

}
printf ("Bye\n") ;
exit();

Winter 2013 Processes 18

University of Washington

Summary

m Processes
= At any given time, system has multiple active processes

® Only one can execute at a time, but each process appears to have total
control of the processor

= OS periodically “context switches” between active processes
= Implemented using exceptional control flow
m Process management
= fork-exec model

Winter 2013 Processes 20

