University of Washington University of Washington

Data & addressing
Roadmap Integers & floats
c Java: Machine code & C
. . x86 assembly
car *c = malloc(sizeof (car)); Car ¢ = new Car(); programming
c-:gniies =1:_I,.OO: c.setléiies({i()m) 8 Procedures &
c-. als = ; c.se als ;
! tack
The Hardware/Software Interface float mpg = get_mpg(c); float mpg = e
i free(c) ; c.getMPG() ; rrays & structs
CSE351 Winter 2013 ~ —— Memory & caches
Assembly get_mpg: Exceptions &
language: pushq %xbp processes
guag movq Ee=c e Virtual memory
E.’C;l;q 4rbp Memory allocation
Exceptional Control Flow ret ¥ 0s: Javavs. C
Machine 0111010000011000 ms f
de: 100011010000010000000010
code: 1000100111000010 [A
110000011111101000011111 Windows 8 Mac Ol
¥ v
Computer
system:
Winter 2013 Exceptional Control Flow 2
Control Flow Control Flow
m So far, we’ve seen how the flow of control changes as a single m Processors do only one thing:
program executes " From startup to shutdown, a CPU simply reads and executes

m A CPU executes more than one program at a time though — we (interprets) a sequence of instructions, one at a time

also need to understand how control flows across the many
components of the system

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow
m Exceptional control flow is the basic mechanism used for: <startup>
= Transferring control between processes and OS inst,
= Handling I/O and virtual memory within the OS . inst2
. . I) time .
= |mplementing multi-process applications like shells and web servers inst;
= Implementing concurrency
inst,

<shutdown>

Winter 2013 Exceptional Control Flow 3 Winter 2013 Exceptional Control Flow 4

University of Washington

Altering the Control Flow

= Up to now: two ways to change control flow:
= Jumps (conditional and unconditional)
= Calland return
Both react to changes in program state
m Processor also needs to react to changes in system state
= user hits “Ctrl-C” at the keyboard
= user clicks on a different application’s window on the screen
= data arrives from a disk or a network adapter
® instruction divides by zero
= system timer expires

Can jumps and procedure calls achieve this?

= Jumps and calls are not sufficient — the system needs mechanisms for
“exceptional” control flow!

Winter 2013 Exceptional Control Flow 5

University of Washington

Exceptions

m An exception is transfer of control to the operating system (OS)
in response to some event (i.e., change in processor state)

User Process os

event — |_current l exception
I_next exception processing
by exception
e return to |_current handler
e return to |_next
*abort

= Examples:
div by 0, page fault, 1/0 request completes, Ctrl-C
m How does the system know where to jump to in the OS?

Winter 2013 Exceptional Control Flow 7

University of Washington

Exceptional Control Flow

m Exists at all levels of a computer system
m Low level mechanisms
= Exceptions

= change processor’s in control flow in response to a system event
(i.e., change in system state, user-generated interrupt)

® Combination of hardware and OS software
m Higher level mechanisms
® Process context switch
= Signals —you'll hear about these in CSE451 and CSE466
® Implemented by either:
= OS software
= Clanguage runtime library

Winter 2013 Exceptional Control Flow 6

Interrupt Vectors

Exception
numbers

code for m Each type of event has a
exception handler 0 unique exception number k

Exception code for

Table 7 exception handler 1 m k=index into exception table
0 .

1 F — (a.k.a. interrupt vector)
2

code for
exception handler 2

m Handler k is called each time

—
n-1 % exception k occurs

code for
exception | ller n-1

Winter 2013 Exceptional Control Flow 8

University of Washington

Asynchronous Exceptions (Interrupts)

m Caused by events external to the processor
® |ndicated by setting the processor’s interrupt pin(s)
® Handler returns to “next” instruction

m Examples:
= |/Ointerrupts

hitting Ctrl-C on the keyboard

clicking a mouse button or tapping a touchscreen

arrival of a packet from a network

arrival of data from a disk
® Hard reset interrupt

= hitting the reset button on front panel
= Soft reset interrupt

= hitting Ctrl-Alt-Delete on a PC

Winter 2013 Exceptional Control Flow 9

University of Washington

Trap Example: Opening File

m User calls: open (filename, options)
m Function open executes system call instruction int

0804d070 <__ libc_open>:

8044d082: cd 80 int $0x80

804d084: 5b pop %ebx
User Process os
- l exception

pop 2
'\l open file
returns

m OS must find or create file, get it ready for reading or writing
m Returns integer file descriptor

Winter 2013 Exceptional Control Flow 11

University of Washington

Synchronous Exceptions

m Caused by events that occur as a result of executing an
instruction:

= Traps
= Intentional: transfer control to OS to perform some function
= Examples: system calls, breakpoint traps, special instructions
= Returns control to “next” instruction

" Faults
= Unintentional but possibly recoverable
= Examples: page faults (recoverable), segment protection faults

(unrecoverable), integer divide-by-zero exceptions (unrecoverable)

= Either re-executes faulting (“current”) instruction or aborts

= Aborts
= Unintentional and unrecoverable
= Examples: parity error, machine check
= Aborts current program

Winter 2013 Exceptional Control Flow 10

University of Washington

Fault Example: Page Fault

int a[1000];
m User writes to memory location ‘;‘ai“ 0
m That portion (page) of user’s memory a[500] = 13;
is currently on disk }
l 80483b7: c7 05 10 9d 04 08 0d movl $0xd, 0x8049d10
User Process os

l exception: page fault

movl
l Create page and

returns load into memory

m Page handler must load page into physical memory
m Returns to faulting instruction: mov is executed again!
m Successful on second try

Winter 2013 Exceptional Control Flow 12

University of Washington

Fault Example: Invalid Memory Reference

int a[1000];
main ()

{

a[5000] = 13;
}

l 80483b7: c7 05 60 e3 04 08 0d movl $0xd, 0x804e360

User Process os

I exception: page fault

movl
detect invalid address

—— signal process

m Page handler detects invalid address
m Sends SIGSEGV signal to user process
m User process exits with “segmentation fault”

Winter 2013 Exceptional Control Flow 13

University of Washington

Summary

m Exceptions
= Events that require non-standard control flow
= Generated externally (interrupts) or internally (traps and faults)
= After an exception is handled, one of three things may happen:
= Re-execute the current instruction
= Resume execution with the next instruction
= Abort the process that caused the exception

Winter 2013 Exceptional Control Flow 15

University of Washington

Exception Table IA32 (Excerpt)

Exception Number Description Exception Class
0 Divide error Fault

13 General protection fault ~ Fault

14 Page fault Fault

18 Machine check Abort

32-127 0OS-defined Interrupt or trap
128 (0x80) System call Trap

129-255 0OS-defined Interrupt or trap

http://download.intel.com/design/processor/manuals/253665.pdf

Winter 2013 Exceptional Control Flow 14

