University of Washington

The Hardware/Software Interface
CSE351 Winter 2013

Memory and Caches Il

University of Washington

General Cache Organization (S, E, B)

E = 2¢ lines per set

r A N set
- "
[Il [ooee] |
i
| I Joeee]]
s=2ssets | Il x|]
900000000 OCOOIOOOIOONONONONOONONONONONOIDS
|] Jeeeel |
cache size:
|E]| we | [o]i]z] IB-lll S x E x B data bytes
valid bit

B = 2 bytes of data per cache line (the data block)

Winter 2013 Memory and Caches Il 3

University of Washington

Types of Cache Misses

m Cold (compulsory) miss
= QOccurs on very first access to a block

m Conflict miss
= QOccurs when some block is evicted out of the cache, but then that block
is referenced again later
® Conflict misses occur when the cache is large enough, but multiple data
blocks all map to the same slot
= e.g., if blocks 0 and 8 map to the same cache slot, then referencing
0, 8,0, 8, ... would miss every time
= Conflict misses may be reduced by increasing the associativity of
the cache
m Capacity miss
= QOccurs when the set of active cache blocks (the working set) is larger
than the cache (just won’t fit)

Winter 2013 Memory and Caches I 2

University of Washington

* Locate set
caChe Read « Check if any line in set
has matching tag
E = 2¢ lines per set * Yes + line valid: hit
-~ A~ ~ * Locate data starting

r at offset

[f fooeef |
Address of byte in memory:
[I{ foooe | [tbits [sbits [bbits |

s=2sets{ [| Jooedf]

tag set block
index offset

data begins at this offset

| e CLLE[Te])|
valid bit ~"

B = 2° bytes of data per cache line (the data block)

Winter 2013 Memory and Caches I

University of Washington

Example: Direct-Mapped Cache (E=1)

Direct-mapped: One line per set
Assume: cache block size 8 bytes

flE]I wg_| [o]s]2]s[a]s]s]7] Ad?:?:sw”:t:m 100

| Coe] GLEGLEEL] et
T @ o] CLELLLED

[G CLELEETE]

University of Washington

Example: Direct-Mapped Cache (E = 1)

Direct-mapped: One line per set
Assume: cache block size 8 bytes

Address of int:

valid? + match?: yes = hit

|
[Cee] LLEGEGEL]
l

block offset

int (4 Bytes) is here

No match: old line is evicted and replaced

Winter 2013 Memory and Caches Il 7

University of Washington

Example: Direct-Mapped Cache (E = 1)

Direct-mapped: One line per set
Assume: cache block size 8 bytes

Winter 2013

valid? + match?: yes = hit

Address of int:

thits | 0..01 | 100

||
|[Cee] CLEGLEET]
l

block offset

Memory and Caches I 6

University of Washington

Example (for E = 1)

Assume sum, i, j in registers
Address of an aligned element
ofa: aa...ayyyyxxxx000

Assume: cold (empty) cache

int

{

sum_array_ rows (double a[16][16])

int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i] [j];
return sum;

3 bits for set, 5 bits for offset
aa...ayyy yxx xx000

0,0:aa...a000 000 00000

™~ 0,0{01{02;0,3 e0:0@1:02:03
0,4:0,5{06:0,7
0,8:0,9:{0ai0,b
0,c{0d{0e}0f

}
int sum_array cols(double a[16][16])
{

int i, j;

double sum = 0;

for (j = 0; j < 16; j++)

for (i = 0; i < 16; i++)
sum += a[i] [j]/

return sum;

}

1,011,1:11,2: 1,3 30313233
1,401,5{1,6{1,7
1,8119!1ai1b
lcildile:df

H_/

32 B =4 doubles

H_J

32 B =4 doubles

4 misses per row of array every access a miss
4*16 = 64 misses 16*16 = 256 misses

inter

2013

Memory and Caches i 8

University of Washington

In this example, cache blocks are
16 bytes; 8 sets in cache
How many block offset bits?

Example (for E = 1)

float dotprod(float x[8], float y[8]) How many set index bits?
{
float: sum = 0; Address bits: ttt....t sss bbbb
e &p B =16 = 2: b=4 offset bits

for (i = 0; i < 8; i++) S= 8=2% s=3index bits

sum += x[i]*y[i]; .
return sum; 0: 000....0 000 0000

} 128: 000....1 000 0000
160: 000....1 010 0000

x[0) x[1]; xI2]: ¥I3] X[0];x[1]ix[2]x[3]

x[4]: x[S]; (6]} x[7]

if x and y have aligned if x and y have unaligned yiol! yiag 21l yi3]
starting addresses, starting addresses,

e.g., &x[0] = 0, &y[0] = 128 e.g., &x[0] = 0, &y[0] =160 Al VISIVIEIVI7]

Winter 2013 Memory and Caches Il 9

University of Washington

E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

compare both

valid? + | match: yes = hit

|[] Gee] LLEGEGT| | Coe] LTBLIT|

block offset

Winter 2013 Memory and Caches If 11

University of Washington

E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

| Cee] LREGEGLEL| ([Cee] CLEGLEEED|

find set

| Cee] LLEGEGLEH| [Coe] LREBLEE)|

| Cee] LLEGEGLEH)| [Coe] ELEELREE)|

| Cee] LLLEGLEGLE| W Coe] EREELRE)|

Winter 2013 Memory and Caches I 10

University of Washington

E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

compare both

valid? + | match: yes = hit

|[Cee] LLEGEELEL)| ([Ces] LRG|
I

block offset
short int (2 Bytes) is here
No match:

* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

Winter 2013 Memory and Caches Il 12

University of Washington University of Washington

Example (for E = 2) Fully Set-Associative Caches (S=1)

float dotj d (float 8], float 8 P . . .
T enls Sl e TR m Fully-associative caches have all lines in one single set, S= 1

float sum = 0; = E=C/B, where Cis total cache size

int i; .
= Since,S=(C/B)/E,therefore,S=1
for (i = 0; i < 8; i++)
sum += x[i]*y[i];

Access: 30-40 cycles = Good if more writes to the location follow

L3 unified cache ‘ = No-write-allocate (just write immediately to memory)

(shared by all cores) Block size: 64 bytes for

all caches.

return sum; m Direct-mapped caches have E=1
} = S=(C/B)/E=C/B
m Tag matching is more expensive in associative caches
If x and y have aligned starting x(o1ix(a1ix21x(31] violivialiyi21{yia) = Fully-associative cache needs C / B tag comparators: one for every line!
dd , e.g. &x[0] = 0, &y[0] = 128,) .
addresses, &8 8x(0] =0, SY101 =125, a1 sl ol] 141 vis visl v * Direct-mapped cache needs just 1 tag comparator
each set ® |n general, an E-way set-associative cache needs E tag comparators
m Tag size, assuming m address bits (m = 32 for 1A32):
" m-log,S—log,B
Winter 2013 Memory and Caches Il 13 Winter 2013 Memory and Caches I 14
Intel Core i7 Cache Hierarchy What about writes?
ProceSSOr PacKAge e = Multiple copies of data exist:
Core 3 i Lli-cache and d-cache: -]]
| 32KB, 8-way, L1, L2, possibly L3, main memory
} Access: 4 cycles m What to do on a write-hit?
3 . - Lo .
| L2 unified cache: erte through (wrlte.|mmed|ately to m.en.mr\./) .
! 256 KB, 8-way, = Write-back (defer write to memory until line is evicted)
e 3 Access: 11 cycles = Need a dirty bit to indicate if line is different from memory or not
! L3 unified cache: m What to do on a write-miss?
8 MB, 16-way, = Write-allocate (load into cache, update line in cache)

Typical caches:
= Write-back + Write-allocate, usually
‘ = Write-through + No-write-allocate, occasionally

Main memory

Winter 2013 Memory and Caches If 15 Winter 2013 Memory and Caches Il 16

University of Washington

Software Caches are More Flexible

m Examples
" File system buffer caches, web browser caches, etc.

m Some design differences
= Almost always fully-associative
= 50, no placement restrictions
= index structures like hash tables are common (for placement)
= Often use complex replacement policies
= misses are very expensive when disk or network involved
= worth thousands of cycles to avoid them
" Not necessarily constrained to single “block” transfers
= may fetch or write-back in larger units, opportunistically

Winter 2013 Memory and Caches Il 17

University of Washington

Example: Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n + j] += a[i*n + k]*b[k*n + j];

Winter 2013 Memory and Caches If 19

University of Washington

Optimizations for the Memory Hierarchy

m Write code that has locality

® Spatial: access data contiguously

= Temporal: make sure access to the same data is not too far apart in time
= How to achieve?

" Proper choice of algorithm

= |oop transformations

Winter 2013 Memory and Caches i 18

University of Washington

Cache Miss Analysis

m Assume:
® Matrix elements are doubles
= Cache block = 64 bytes = 8 doubles
= Cache size C << n (much smaller than n)

n
m First iteration: —
" n/8+n=9n/8 misses
(omitting matrix c) _ *
= Afterwards in cache: - EE——
(schematic)
= *

8 wide
Winter 2013 Memory and Caches Il 20

University of Washington

Cache Miss Analysis

m Assume:
® Matrix elements are doubles
= Cache block = 64 bytes = 8 doubles
= Cache size C << n (much smaller than n)

m Other iterations:
= Again:
n/8 + n =9n/8 misses
(omitting matrix c)

m Total misses:
= 9n/8 * n2=(9/8) * n3

Winter 2013 Memory and Caches Il

University of Washington

Cache Miss Analysis

m Assume:
® Cache block = 64 bytes = 8 doubles
= Cache size C << n (much smaller than n)
= Three blocks M fit into cache: 3B2< C

m First (block) iteration:
= B2/8 misses for each block M
= 2n/B * BY/8 = nB/4
(omitting matrix c)

= Afterwards in cache [}
(schematic)

Winter 2013 Memory and Caches Il

8 wide

21

n/B blocks
EEEEE B
0
*
?
Block size B x B
ANEEE B
[|
* I
23

Blocked Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i+=B)
for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (il = i; il < i+B; il++)
for (1 = j; 31 < 34B; l++)
for (k1 = k; k1l < k+B; kl++)
c[il*n + j1] += a[il*n + k1]*b[kl*n + j1];

j1

c a b

= *
| |]

Block size Bx B

Winter 2013 Memory and Caches Il

Cache Miss Analysis

m Assume:
= Cache block = 64 bytes = 8 doubles
= Cache size C << n (much smaller than n)
= Three blocks M fit into cache: 3B2 < C

University of Washington

22

University of Washington

. . n/B blocks
m Other (block) iterations:
® Same as first iteration - []
= 2n/B * BY/8 = nB/4 _ LU . =

m Total misses:
= nB/4 * (n/B)?=n3/(4B)

Winter 2013 Memory and Caches Il

Block size Bx B

24

University of Washington

Summary

m No blocking: (9/8) * n3

m Blocking: 1/(4B) * n3

m IfB=8 differenceis4*8*9/8 =36x
m IfB=16 differenceis4*16*9/8=72x

m Suggests largest possible block size B, but limit 3B2 < C!

m Reason for dramatic difference:
® Matrix multiplication has inherent temporal locality:
= Input data: 3n2, computation 2n3
= Every array element used O(n) times!
= But program has to be written properly

Winter 2013 Memory and Caches Il 25

Intel Core i7

: 32 KB L1 i-cache
The Memory Mountain e] oache
256 KB unified L2 cache
8M unified L3 cache

All caches on-chip

Read throughput (MB/s)

Winter 2013 Memory and Caches If 27

University of Washington

Cache-Friendly Code

m Programmer can optimize for cache performance
" How data structures are organized
® How data are accessed
= Nested loop structure
= Blocking is a general technique
m All systems favor “cache-friendly code”
® Getting absolute optimum performance is very platform specific
= Cache sizes, line sizes, associativities, etc.
® (Can get most of the advantage with generic code
= Keep working set reasonably small (temporal locality)
= Use small strides (spatial locality)
= Focus on inner loop code

Winter 2013 Memory and Caches Il 26

