University of Washington

The Hardware/Software Interface
CSE351 Winter 2013

Memory and Caches |

University of Washington

Data & addressing

Roadmap Integers & floats

Machine code & C

C: Java:
x86 assembly
car fc = malloc (sizeof (car)) ; Car c = new Car() ; programming
c->miles = 100; c.setMiles (100) ; Procedures &
c->gals = 17; c.setGals (17) ;
_ stacks
float mpg = get mpg(c) ; float mpg =
free (c); c.getMPG () ; Arrays & structs
Y — Memory & caches
Assembly get mpg: Processes
language: pushq %rbp Virtual memory
APE REER, WERE Memory allocation
popq 3rbp Java vs. C
ret $
Machine 0111010000011000
de: 100011010000010000000010
code: 1000100111000010
110000011111101000011111

Computer
system:

Winter 2013 Memory and Caches | 2

University of Washington

Themes of CSE 351

m Interfaces and abstractions

= So far: data type abstractions in C; x86 instruction set architecture
(interface to hardware)

= Today: abstractions of memory
= Soon: process and virtual memory abstractions

m Representation
" |ntegers, floats, addresses, arrays, structs

m Translation
" Understand the assembly code that will be generated from C code

m Control flow

® Procedures and stacks; buffer overflows

Winter 2013 Memory and Caches | 3

University of Washington

Making memory accesses fast!

Cache basics
Principle of locality

|

|

m Memory hierarchies
m Cache organization
|

Program optimizations that consider caches

Winter 2013 Memory and Caches | 4

University of Washington

How does execution time grow with SIZE?

int array[SIZE];
int A = 0;

for (int 1 = 0 ; i < 200000 ; ++ 1) {
0 ; j < SIZE ; ++ j) {
A += array[]l:

for (int j

} TIME

Plot

SIZE

Winter 2013 Memory and Caches | 5

Actual Data

45

40

35

30

25

Time

20

15

10

— 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

SIZE

Winter 2013 Memory and Caches | 6

University of Washington

Problem: Processor-Memory Bottleneck

Processor performance

doubled about _
every 18 months Bus bandwidth
evolved much slower
Main
CPU | Reg
Memory

Core 2 Duo: Core 2 Duo:
Can process at least Bandwidth
256 Bytes/cycle 2 Bytes/cycle

Latency

100 cycles

Problem: lots of waiting on memory

Winter 2013 Memory and Caches | 7

University of Washington

Problem: Processor-Memory Bottleneck

Processor performance

doubled about _
every 18 months Bus bandwidth
evolved much slower
Main
CPU | Reg Cache
Memory

Core 2 Duo: Core 2 Duo:
Can process at least Bandwidth
256 Bytes/cycle 2 Bytes/cycle

Latency

100 cycles

Solution: caches

Winter 2013 Memory and Caches | 8

Cache

m English definition: a hidden storage space for provisions,
weapons, and/or treasures

m CSE definition: computer memory with short access time used
for the storage of frequently or recently used instructions or
data (i-cache and d-cache)

more generally,

used to optimize data transfers between system elements
with different characteristics (network interface cache, 1/0
cache, etc.)

Winter 2013 Memory and Caches | 9

University of Washington

General Cache Mechanics

Smaller, faster, more expensive

Cache 8 9 14 3 memory caches a subset of
the blocks

Data is copied in block-sized
transfer units

Larger, slower, cheaper memory
Memory 0 1 2 3 viewed as partitioned into “blocks”
4 5 6 7
8 9 10 11
12 13 14 15
0 0000000000000 O0CO0CO

Winter 2013 Memory and Caches | 10

University of Washington

General Cache Concepts: Hit

Request: 14 Data in block b is needed
h 2 5 12 3 Block b is in cache:
Cache Hit!
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
000000000 0O0OCOCGOGOOOSOOS

Winter 2013 Memory and Caches | 11

University of Washington

General Cache Concepts: Miss

Request: 12 Data in block b is needed
h . 5 12 3 Block b is not in cache:
Cache Miss!
Block b is fetched from
12 Request: 12
memory
Block b is stored in cache
Memory 0 1 2 3 * Placement policy:
4 5 6 7 determines where b goes
* Replacement policy:
1 11
8 2 0 determines which block
12 13 14 15 gets evicted (victim)

Winter 2013 Memory and Caches | 12

University of Washington

Cost of Cache Misses

m Huge difference between a hit and a miss
= Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider:
Cache hit time of 1 cycle
Miss penalty of 100 cycles

= Average access time:
= 97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
= 99% hits: 1 cycle +0.01 * 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

Winter 2013 Memory and Caches | 13

University of Washington

Why Caches Work

m Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

m Temporal locality: O

= Recently referenced items are likely
to be referenced again in the near future block

= Why is this important?

m Spatial locality: ﬁ

" |tems with nearby addresses tend
to be referenced close together in time

block

®= How do caches take advantage of this?

Winter 2013 Memory and Caches | 14

University of Washington

Example: Locality?

sum = 0;

for (1 = 0; 1 < n; i++)
sum += a[i];

return sum;

m Data:
= Temporal: sumreferenced in each iteration
= Spatial: array a[] accessed in stride-1 pattern

m Instructions:
" Temporal: cycle through loop repeatedly

= Spatial: reference instructions in sequence

m Being able to assess the locality of code is a crucial skill
for a programmer

Winter 2013 Memory and Caches | 15

University of Washington

Locality Example #1

int sum array rows(int a[M] [N])
{
int 1, j, sum = 0; alo][o] a[o](1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
for (1 = 0; i < M; i++4) a[2][0] a[2][1] a[2][2] a[2][3]
for (j = 0; j < N; j++)
sum += af[i][]];
return sum;

+a[0][0]
+afo][1]
:af0][2]
+a[0][3]
: a[1][0]
ra[1][1]
+a[1][2]
: a[1][3]
: a[2][0]
+af2][1]
raf2][2]
12: a[2][3]

O O NOOULLE, WN R

[
= O

stride-1

Winter 2013 Memory and Caches | 16

University of Washington

Locality Example #2

int sum array cols(int a[M] [N])
{
int i, j, sum = 0; al0]l0] a[o][1] a[o]l2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
for (j = 0; j < N; j++) a[2]l0] a[2][1] a[2][2] a[2][3]
for (1 = 0; 1 < M; i++)
sum += a[i] []];
return sum;

: a[0][0]
- a[1][0]
: a[2][0]
:a[o][1]
ra[1][1]
raf2][1]
:a[0][2]
ra[1][2]
:a[2][2]
:a[0][3]
ra[1][3]
12: a[2]([3]

O O NOOULLE, WN R

[
= O

stride-N

Winter 2013 Memory and Caches | 17

University of Washington

Memory Hierarchies

m Some fundamental and enduring properties of hardware and
software systems:

= Faster storage technologies almost always cost more per byte and have
lower capacity

" The gaps between memory technology speeds are widening
= True for: registers € cache, cache <> DRAM, DRAM & disk, etc.
= Well-written programs tend to exhibit good locality

m These properties complement each other beautifully

m They suggest an approach for organizing memory and storage
systems known as a memory hierarchy

Winter 2013 Memory and Caches | 18

University of Washington

An Example Memory Hierarchy

A
registers CPU registers hold words retrieved from L1 cache
on-chip L1
Smaller, cache (SRAM) L1 cache holds cache lines retrieved from L2 cache
faster,
costlier .
byt off-chip L2
er e
P 4 cache (SRAM) L2 cache holds cache lines retrieved
from main memory
Larger, main memory
| (DRAM) Main memory holds disk blocks
siower, . -
retrieved from local disks
cheaper
per byte local secondary storage _ ,
(Iocal diSkS) Local disks hold files
retrieved from disks on
remote network servers
remote secondary storage
(distributed file systems, web servers)
\/

Winter 2013 Memory and Caches | 19

University of Washington

Memory Hierarchies

m Fundamental idea of a memory hierarchy:
® For each k, the faster, smaller device at level k serves as a cache for the
larger, slower device at level k+1.
m Why do memory hierarchies work?

= Because of locality, programs tend to access the data at level k more
often than they access the data at level k+1.

" Thus, the storage at level k+1 can be slower, and thus larger and
cheaper per bit.
m Big Idea: The memory hierarchy creates a large pool of
storage that costs as much as the cheap storage near the

bottom, but that serves data to programs at the rate of the
fast storage near the top.

Winter 2013 Memory and Caches | 20

University of Washington

Cache Performance Metrics

m Miss Rate

" Fraction of memory references not found in cache (misses / accesses)
=1 - hit rate
= Typical numbers (in percentages):
= 3% -10% for L1

= Can be quite small (e.g., < 1%) for L2, depending on size, etc.

m Hit Time
" Time to deliver a line in the cache to the processor
= |Includes time to determine whether the line is in the cache
= Typical hit times: 1 - 2 clock cycles for L1; 5 - 20 clock cycles for L2
m Miss Penalty
= Additional time required because of a miss
= Typically 50 - 200 cycles for L2 (trend: increasing!)

Winter 2013 Memory and Caches | 21

University of Washington

Examples of Caching in the Hierarchy

Cache Type What is Cached? | Where is it Cached? I(.s;:lr;?)/ Managed By
Registers 4/8-byte words CPU core 0 | Compiler

TLB Address translations | On-Chip TLB 0 | Hardware

L1 cache 64-bytes block On-Chip L1 1 | Hardware

L2 cache 64-bytes block Off-Chip L2 10 | Hardware
Virtual Memory 4-KB page Main memory 100 | Hardware+0S
Buffer cache Parts of files Main memory 100 | OS

Network cache Parts of files Local disk 10,000,000 | File system client
Browser cache Web pages Local disk 10,000,000 | Web browser
Web cache Web pages Remote server disks 1,000,000,000 | Web server

Winter 2013

Memory and Caches |

22

University of Washington

Memory Hierarchy: Core 2 Duo Not drawn to scale

L1/L2 cache: 64 B blocks

~4 VIB ~4 GB ~500 GB
L1
I-cache
Lz . Main
32 KB iy Memor
cache Yy
CPU | Reg =
D-cache
Throughput: 16 B/cycle 8 B/cycle 2 B/cycle 1 B/30 cycles
Latency: 3 cycles 14 cycles 100 cycles millions D | S k

Winter 2013 Memory and Caches | 23

