University of Washington University of Washington

Data Structures in Assembly

n
The Hardware/Software Interface .
CSE351 Winter 2013 .
m Structs
= Alignment
) m Unions
Data Structures II: Structs and Unions
Structures Structures
struct rec { struct rec { Memory Layout
int i; int i;
int af3]; int a(3]; (iJa]
int *p; int *p; 0 4 16 20
}; }:

m Characteristics
= Contiguously-allocated region of memory
= Refer to members within structure by names
" Members may be of different types

Winter 2013 Data Structures Il 3 Winter 2013 Data Structures I 4

University of Washington University of Washington

Structures Generating Pointer to Structure Member
struct rec {
. struct rec .
m Accessing Structure Member int i; izt is ¢ r r+4+4*idx
= Given an instance of the struct, we can use ’,‘": :[?]" int a[3]; |
the . operator, just like Java: }'m pi int *p; i _H
. . P . ! Y L
struct rec rl; rl.i = val; 0 4 16 20
® What if we have a pointer to a struct: struct rec *r = &rl; . .
= Using * and . operators: (*r) .i = val; u Generatmg Pointer to int *find a
= Or, use ->operator for short: r->i = val; Array Element (struct rec *r, int idx)
= Pointer indicates first byte of structure; access members with offsets ® Offset of each structure { s
member determined return &r->a[idx];
id at compile time }
vo1l
set_i(struct rec *r, 1A32 Assembly -
int val) # %eax = val # %ecx = idx
{ # %edx = r # %edx = r
r->i = val; movl %eax, (%edx) # Mem[r] = val leal 0(,%ecx,4),%eax # 4*idx
} leal 4 (%eax,%edx),%eax # r+4*idx+4

Winter 2013 Data Structures Il

5 Winter 2013 Data Structures I

University of Washington University of Washington

Structures & Alignment Alignment Principles

m Unaligned Data

struct S1 { m Aligned Data
)) char c; ® Primitive data type requires K bytes
c i[0] i[1] v . . .
I|> l|>+1 p-||-5 p+|9 o117 ;nsb; [21; = Address must be multiple of K
(o) e v;
} *p;: m Aligned data is required on some machines; it is advised
. on |A32
= Aligned Data = Treated differently by IA32 Linux, x86-64 Linux, and Windows!
" Primitive data type requires K bytes
« Address must bipmul‘?ple of K v m What is the motivation for alignment?
<] [aro1 | irag [-
p+0 pt+4 p+8 p+l6 pt+24
Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8
Winter 2013 Data Structures I 7 Winter 2013

Data Structures Il

University of Washington University of Washington

Alignment Principles
m Aligned Data

® Primitive data type requires K bytes

Specific Cases of Alignment (1A32)

m 1 byte: char, ...

. ® no restrictions on address
= Address must be multiple of K

. m 2 bytes: short, ...
m Aligned data is required on some machines; it is advised v o
on IA32 = lowest 1 bit of address must be 0,
i *
" Treated differently by IA32 Linux, x86-64 Linux, and Windows! = 4 bytes:int, float, char ¥, ...
= Motivation for Aligning Data = lowest 2 bits of address must be 00,
= Physical memory is accessed by aligned chunks of 4 or 8 bytes (system- = 8bytes: double, ...
dependent) = Windows (and most other OSs & instruction sets): lowest 3 bits 000,
= Inefficient to load or store datum that spans quad word boundaries ® Linux: lowest 2 bits of address must be 00,
= Also, virtual memory is very tricky when datum spans two pages (later...) = i.e, treated the same as a 4-byte primitive data type
m Compiler m 12 bytes: long double
= |nserts gaps in structure to ensure correct alignment of fields = Windows, Linux: lowest 2 bits of address must be 00,
= sizeof () should be used to get true size of structs
Winter 2013 Data Structures Il 9 Winter 2013 Data Structures Il 10

University of Washington University of Washington

Satisfying Alignment with Structures Different Alignment Conventions

struct S1 { struct S1 {
m Within structure: char o: m IA32 Windows or x86-64: ?h:r_ ?2]
’ in 1 ;
® Must satisfy element’s alignment requirement int i[2]; = K =8, due to double member double v;
1 ; *pl;
= Overall structure placement \ f;‘lﬁ_’ v L2
® Each structure has alignment requirement K
= K= Largest alignment of any element el | sro1 | aray J v |
1+ 1+4 1+ 1+24
® |nitial address & structure length must be multiples of K p1+0 P pl48 P
m Example (under Windows or x86-64): k = ? 1A32 i ,
| INUX: K=7
= K=8, dueto double member
® K =4; double aligned like a 4-byte data type
[c] [iro1 [a1y | I |
pl+0 pl+4d pl+8 pl+lé pl+24
| | [c] [sro1 [airay | |
Multiple of 4 Multiple of 8 p1+0 pltd pl+8 pl+12 p1+20
Multiple of 8 Multiple of 8

Winter 2013

Data Structures Il

11

Winter 2013 Data Structures If

12

Saving Space

m Put large data types first:

struct S1 { struct S2 {
char c; double v;
int i[2]; int i[2];
double v; char c;

} *pl; } *p2;

m Effect (example x86-64, both have K=8)

[c] [aro; [aray | I v |
pl+0 pl+4d pl+8 pl+lé pl+24

Unfortunately, doesn’t
satisfy requirement
| v [iro1 [ifay Tel |thatstruct’s total size

p2+0 p2+8 p2+16 |isa multiple of K

Winter 2013 Data Structures Il 13

Saving Space

m Put large data types first:

struct S3 { struct S4 {
char c; int i;
int i; char c;
char d; char d;

} *p3; } *p4;

m Effect (K=4)

B soves IERNEY sores |

L+ [da] |

m This strategy can save some space for certain structs.

Winter 2013 Data Structures Il 15

University of Washington

Arrays of Structures

m Satisfy alignment requirement struct S2 {
for every element double v;
int i[2];
char c;
} a[10];
|a[0] |a[1]]a[2] | K
a+0 a+24 a+48 a+72
I v [iro1 T airay Tef |
a+24 a+32 a+40 a+48

University of Washington

Unions

m Allocated according to largest element
m Can only use one member at a time

union Ul {

char c;

int i[2]; t|

double v; i[o0] | i[1]
} *up;

struct S1 { up+0 up+4 up+8
char c;
int i[2];
double v;
} *sp;

| c I I i[o] i[1] v
sp+0 sp+4 sp+8 sp+16 sp+24

Winter 2013 Data Structures If 16

What Are Unions Good For?

m Unions allow the same region of memory to be referenced as
different types
= Different “views” of the same memory location
® Can be used to circumvent C’s type system (bad idea)
m Better idea: use a struct inside a union to access some
memory location either as a whole or by its parts

Winter 2013 Data Structures Il 17

University of Washington

Summary

m ArraysinC

= Contiguous allocations of memory

® No bounds checking

= Can usually be treated like a pointer to first element
m Structures

= Allocate bytes in order declared

® Pad in middle and at end to satisfy alignment
m Unions

= Provide different views of the same memory location

Winter 2013 Data Structures Il 19

University of Washington

Unions For Embedded Programming

typedef union
{

unsigned char byte;
struct {
unsigned char b0

o5ls (Note: the placement of these
e ches b1;1:- fields and other parts of this
unsigned char b2:1; example are implementation-
unsigned char b3:1; dependent)
unsigned char reserved:4;
} bits;
} hw_register;

hw_register reg;

reg.byte = 0x3F; // 00111111,
reg.bits.b2 = 0; // 00111011,
reg.bits.b3 = 0; // 00110011,
unsigned short a = reg.byte;
printf ("0x%X\n", a); // output: 0x33
Winter 2013 Data Structures I 18

