University of Washington

The Hardware/Software Interface
CSE351 Winter 2013

Data Structures ll: Structs and Unions

University of Washington

Data Structures in Assembly

m Arrays
" One-dimensional
" Multi-dimensional (nested)
" Multi-level

m Structs
= Alignment

m Unions

Winter 2013 Data Structures Il 2

University of Washington

Structures

struct rec {
int 1i;
int a[3];
int *p;

};

Winter 2013 Data Structures Il 3

University of Washington

Structures
struct rec { Memory Layout
int 1i;
int a[3]; ila P
} int *p; 0O 4 16 20

m Characteristics
= Contiguously-allocated region of memory
= Refer to members within structure by names
= Members may be of different types

Winter 2013 Data Structures Il 4

University of Washington

Structures
struct rec {
m Accessing Structure Member int i;
= Given an instance of the struct, we can use ?n: 2[3] 4
. . n o
the . operator, just like Java: } .l P

= struct rec rl; rl.i = val;
= What if we have a pointer to a struct: struct rec *r = &rl;
= Using * and . operators: (*r) .1 = val;
= Or, use —=> operator forshort: r->i = wval;
= Pointer indicates first byte of structure; access members with offsets

void
set i(struct rec *r, IA32 Assembly
int val) # %eax = val
{ # %edx = r
r->i = val; movl %eax, (%$edx) # Mem[r] = val
}

Winter 2013 Data Structures Il 5

University of Washington

Generating Pointer to Structure Member

struct rec {
* 4
int i r r+4+4*i1dx

int a[3]; |
int *p;

};

0O 4 16 20

m Generating Pointer to int *£ind a

Array Element (struct rec *r, int idx)
= Offset of each structure {
member determined return &r->alidx];

at compile time }

%ecx = idx

%edx = r

leal 0 (,%ecx,4) , %eax # 4*idx
leal 4 (%eax,%edx) ,%eax # r+4*idx+4

Winter 2013 Data Structures Il 6

University of Washington

Structures & Alignment

m Unaligned Data struct S1 {
: : char c;
c| i[O0] i[1] e int i[2];
p p+l p+5 p+9 p+17 double v;
} *p;

m Aligned Data

" Primitive data type requires K bytes
= Address must be multiple of K

o] i[0] i[1] v
p+0 pt+4 p+8 p+16 pt+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

Winter 2013 Data Structures Il 7

University of Washington

Alignment Principles
m Aligned Data

" Primitive data type requires K bytes
= Address must be multiple of K

m Aligned data is required on some machines; it is advised
on IA32
" Treated differently by IA32 Linux, x86-64 Linux, and Windows!

m What is the motivation for alighment?

Winter 2013 Data Structures Il 8

University of Washington

Alignment Principles

m Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K

m Aligned data is required on some machines; it is advised
on IA32

" Treated differently by IA32 Linux, x86-64 Linux, and Windows!
m Motivation for Aligning Data

= Physical memory is accessed by aligned chunks of 4 or 8 bytes (system-
dependent)

= |nefficient to load or store datum that spans quad word boundaries
= Also, virtual memory is very tricky when datum spans two pages (later...)
m Compiler

" |nserts gaps in structure to ensure correct alignment of fields
" sizeof () should be used to get true size of structs

Winter 2013 Data Structures Il 9

University of Washington

Specific Cases of Alignment (I1A32)

m 1 byte: char, ...
® no restrictions on address

m 2 bytes: short, ...
= |owest 1 bit of address must be 0,
m 4 bytes: int, float, char ¥, ...

= lowest 2 bits of address must be 00,

m 8 bytes: double, ...
= Windows (and most other OSs & instruction sets): lowest 3 bits 000,
= Linux: lowest 2 bits of address must be 00,
= j.e., treated the same as a 4-byte primitive data type

m 12 bytes: long double

= Windows, Linux: lowest 2 bits of address must be 00,

Winter 2013 Data Structures Il 10

University of Washington

Satisfying Alignment with Structures

m Within structure: Stiﬁiﬁ 21 {
" Must satisfy element’s alignment requirement int i[2];
m Overall structure placement \ f;‘lﬂl_’le v
® Each structure has alignment requirement K
= K = Largest alignment of any element
" |nitial address & structure length must be multiples of K
m Example (under Windows or x86-64): K = ?
" K=8, due to double member
c i[0] if1] v
pl+0 pl+4 pl+8 pl+16 pl+24
Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

Winter 2013 Data Structures Il 1 1

University of Washington

Different Alignment Conventions

struct S1 {
m IA32 Windows or x86-64: char c;
int i[2];
" K=8, duetodouble member Sl e
} *pl;
c i[0] i[1] \'4
pl+0 pl+4 pl+8 pl+16 pl+24

m |IA32 Linux: K="?
= K=4;double aligned like a 4-byte data type

c i[0] if1] v
pl+0 pl+4 pl+8 pl+12 pl+20

Winter 2013 Data Structures Il 12

Saving Space

m Put large data types first:

struct S1 { struct S2 {
char c; double v;
int i[2]; int i[2];
double v; char c;

} *pl; } *p2;

m Effect (example x86-64, both have K=8)

o] i[0] i[1] v
pl+0 pl+4 pl+8 pl+16 pl+24

Unfortunately, doesn’t
satisfy requirement
\'4 i[0] i[1l] lc]| |thatstruct’s totalsize

p2+0 p2+8 p2+16 | Isamultiple of K

Winter 2013 Data Structures Il 13

University of Washington

Arrays of Structures

m Satisfy alighment requirement struct S2 {
for every element double v;
int i[2];

char c;

} a[l0];

af0] all] al2] oo o
a+0 a+24 a+48 a+72
v i[0] if1] Jec

a+24 a+32 a+40 a+48

Winter 2013 Data Structures Il 14

Saving Space

m Put large data types first:

struct S3 { struct S4 {
char c; int 1i;
int 1i; char c;
char d; char d;

} *p3; } *p4;

m Effect (K=4)

i cld

m This strategy can save some space for certain structs.

Winter 2013 Data Structures Il 15

University of Washington

Unions

m Allocated according to largest element
m Can only use one member at a time

union Ul {
char c¢;
int i[2];
double v; i[0] i[1]

} *up;

struct S1 { up+0 up+4 up+8
char c;
int i[2];
double v;
} *sp;

c i[O0] i[l] v
sp+0 sp+4 sp+8 sp+16 sp+24

Winter 2013 Data Structures Il 16

University of Washington

What Are Unions Good For?

m Unions allow the same region of memory to be referenced as
different types

= Different “views” of the same memory location
= Can be used to circumvent C’s type system (bad idea)

m Better idea: use a struct inside a union to access some
memory location either as a whole or by its parts

Winter 2013 Data Structures Il 17

University of Washington

Unions For Embedded Programming

typedef union
{

unsigned char byte;
struct {
unsigned char b0:1;

(Note: the placement of these
unsigned char bl:1; fields and other parts of this

unsigned char b2:1; example are implementation-

unsigned char b3:1; dependent)
unsigned char reserved:4;
} bits;
} hw _register;

hw register reg;

reg.byte = 0x3F; // 00111111,
reg.bits.b2 = 0; // 00111011,
reg.bits.b3 = 0; // 00110011,

unsigned short a = reg.byte;
printf ("0x%X\n", a); // output: 0x33

Winter 2013 Data Structures Il 18

University of Washington

Summary

m ArraysinC
® Contiguous allocations of memory
= No bounds checking
= Can usually be treated like a pointer to first element

m Structures
= Allocate bytes in order declared
= Padin middle and at end to satisfy alighment

m Unions
" Provide different views of the same memory location

Winter 2013 Data Structures Il 19

