University of Washington

The Hardware/Software Interface
CSE351 Winter 2013

Procedures and Stacks Il

University of Washington

x86-64 Procedure Calling Convention

m Doubling of registers makes us less dependent on stack
= Store argument in registers
= Store temporary variables in registers

m What do we do if we have too many arguments or too many
temporary variables?

Winter 2013 Procedures and Stacks Il 2

University of Washington

x86-64 64-bit Registers: Usage Conventions

Winter 2013

$rax Return value 2r8 Argument #5
$rbx Callee saved 2r9 Argument #6
Srox Argument #4 rl0 Caller saved
$rdx Argument #3 $rll Caller Saved
$rsi Argument #2 2rl2 Callee saved
srdi Argument #1 $rl3 Callee saved
rsSp Stack pointer $rld Callee saved
srbp Callee saved %$rl5 Callee saved

Procedures and Stacks Il

University of Washington

Revisiting swap, I1A32 vs. x86-64 versions

swap: swap (64-bit long ints):
pushl %ebp movq (%rdi) , %rdx
movl %esp, Sebp Set movq (%rsi), %Srax
pushl %ebx Up movq $rax, (%rdi)
movq $rdx, (%rsi)
movl 12(%ebp),%ecx\ ret
movl 8 (%ebp) , $edx
movl (%ecx), %eax | dy m Operands passed in registers

movl (%edx) ,%ebx " First (xp) in $rdi,
movl %eax, (%edx)
movl %ebx, (%ecx)

second (yp) in $rsi
" 64-bit pointers

\
mov; -4 1g%eblo) , 5ebx m No stack operations
movl %ebp, 3esp > Finish .
popl $ebp required (except ret)
ret ~ m Avoiding stack

® Can hold all local information
in registers

Winter 2013 Procedures and Stacks Il 4

University of Washington

X86-64 procedure call highlights

m Arguments (up to first 6) in registers
= Faster to get these values from registers than from stack in memory

m Local variables also in registers (if there is room)

m callgqginstruction stores 64-bit return address on stack
= Address pushed onto stack, decrementing %rsp by 8

m No frame pointer

= All references to stack frame made relative to %rsp; eliminates need to
update %ebp/%rbp, which is now available for general-purpose use

m Functions can access memory up to 128 bytes beyond %rsp:
the “red zone”

= (Can store some temps on stack without altering %rsp

m Registers still designated “caller-saved” or “callee-saved”

Winter 2013 Procedures and Stacks Il 5

University of Washington

x86-64 Stack Frames

m Often (ideally), x86-64 functions need no stack frame at all
= Just a return address is pushed onto the stack when a function call is
made
m A function does need a stack frame when it:
" Has too many local variables to hold in registers
® Has local variables that are arrays or structs

= Uses the address-of operator (&) to compute the address of a local
variable

= (Calls another function that takes more than six arguments
= Needs to save the state of callee-save registers before modifying them

Winter 2013 Procedures and Stacks Il 6

University of Washington

Example

long int call proc() call proc:

{ subg $32,%rsp
long x1 = 1; movg $1,16(%rsp)
int X2 = 2; movl $2,24(%rsp)
short x3 = 3; movw $3,28 (%rsp)
char x4 = 4; movb $4,31 (%rsp)
proc(x1l, &x1, x2, &x2, e o o

x3, &x3, x4, &x4);
return (xl1+x2)* (x3-x4) ;

}

Return address to caller of call_proc —— %rsp

NB: Details may vary
depending on compiler.

Winter 2013 Procedures and Stacks Il 7

University of Washington

Example

long int call proc() call proc:

{ subg $32,%rsp
long x1 =1; movg $1,16(%rsp)
int X2 = 2; movl $2,24(%rsp)
short x3 = 3; movw $3,28 (%rsp)
char x4 = 4; movb $4,31 (%rsp)
proc(x1l, &x1, x2, &x2, e o o

x3, &x3, x4, &x4);
return (xl+x2)* (x3-x4);

}

Return address to caller of call_proc
x4 x3 X2

x1

)y Irsp

Winter 2013 Procedures and Stacks Il 8

University of Washington

Example

long int call proc() call proc:
{ e o o
long =x1 = 1; leag 24 (%rsp),%rcx
int X2 = 2; leag 16 (%rsp),%rsi
short x3 = 3; leag 31 (%rsp),%rax
char x4 = 4; movqg %rax,8 (%rsp)
proc(x1l, &x1, x2, &x2, movl $4, (%rsp)
x3, &x3, x4, &x4); leag 28 (%rsp),%r9
return (xl+x2)* (x3-x4) ; movl $3,%r8d
} movl $2,%edx
movg $1,%rdi
Return address to caller of call_proc call proc
x4 X3 X2 **
x1 Arguments passed in (in
Arg 8 order): rdi, rsi, rdx, rcx, r8, r9
Arg 7 ¢ Irsp

Winter 2013 Procedures and Stacks Il 9

University of Washington

Example

long int call proc() call proc:
{ e o o
long =x1 = 1; leag 24 (%rsp),%rcx
int X2 = 2; leag 16(%rsp) ,%rsi
short x3 = 3; leag 31 (%rsp), %rax
char x4 = 4; movq %rax, 8 (%rsp)
proc(x1l, &x1, x2, &x2, movl $4, (%rsp)
x3, &x3, x4, &x4); leag 28 (%rsp),%r9
return (xl+x2)* (x3-x4); movl $3,%r8d
} movl $2,%edx
movg $1,%rdi
Return address to caller of call_proc call proc
x4 x3 X2 . °
x1
Arg 8
Arg 7
Return address to line after call to proc [* $rsp

Winter 2013 Procedures and Stacks Il 10

University of Washington

Example

long int call proc() call proc:
{ e o o
long =x1 = 1; movswl 28 (%rsp) ,%eax
int X2 = 2; movsbl 31 (%rsp) , %edx
short x3 = 3; subl %edx, $eax
char x4 = 4; cltq
proc(x1l, &x1, x2, &x2, movslg 24 (%rsp) ,%rdx
x3, &x3, x4, &x4); addqgq 16 (%rsp) , $rdx
return (xl1l+x2)* (x3-x4) ; imulg %rdx,%rax
} addg $32,%rsp
ret
Return address to caller of call_proc
x4 x3 X2
x1
Arg 8

Arg 7 ¢ Irsp

Winter 2013 Procedures and Stacks Il 11

University of Washington

Example

long int call proc() call proc:

{ e o o
long =x1 = 1; movswl 28 (%rsp) , %eax
int X2 = 2; movsbl 31 (%rsp) , %$edx
short x3 = 3; subl %$edx, $eax
char x4 = 4; cltq
proc(x1l, &x1, x2, &x2, movslqg 24 (%rsp), %rdx

x3, &x3, x4, &x4); addqgq 16 (%rsp) , $rdx

return (xl+x2)* (x3-x4); imulg %rdx,%rax

} addg $32,%rsp

ret

Return address to caller of call_proc < $rsp

Winter 2013 Procedures and Stacks Il 12

University of Washington

x86-64 Procedure Summary

m Heavy use of registers (faster than using stack in memory)
= Parameter passing
" More temporaries since more registers

m Minimal use of stack
"= Sometimes none
= When needed, allocate/deallocate entire frame at once
= No more frame pointer: address relative to stack pointer

m More room for compiler optimizations
= Prefer to store data in registers rather than memory
" Minimize modifications to stack pointer

Winter 2013 Procedures and Stacks Il 13

