University of Washington

The Hardware/Software Interface
CSE351 Winter 2013

Basics of Machine Programming

University of Washington

Data & addressing
Roadmap Integers & floats
. Machine code & C
C: Java:

x86 assembly

car *c = malloc(sizeof (car)) ; Car c = new Car(); programming
c->miles 100; c.setMiles (100) ; Procedures &
c->gals = 17; c.setGals (17) ; stacks
float mpg = get mpg(c) ; float mpg =
free(c) ; - c.getMPG () ; Arrays & structs
— — Memory & caches
Assembly get _mpg: Processes
language: pushq ®rbp Virtual memory
oV RSB SEE Memory allocation
PopPq $rbp Javavs. C
ret * 0Os:
Machine 0111010000011000 -- ‘L
100011010000010000000010
code: 1000100111000010 | §)
110000011111101000011111 Windows 8 Mac 1V o
1
v
Computer
system:

Winter 2013

Thstruction Set Architecture

University of Washington

Themes of CSE 351

m Interfaces and abstractions
= So far: some abstractions in C code
= e.g.various data types: ints, floats, pointers, arrays
® Today: what interface does the hardware present?
m Representation
= So far: integers, floating point numbers, addresses
= Understanding what’s below the C abstractions makes you a better
programmer
m Translation
® Today: how do we get from C code to machine code? What machine
code should you expect to be produced from your C code?
m Control flow

Winter 2013 Instruction Set Architecture 2

Today’s Topics

m What is an ISA (Instruction Set Architecture)?

m A brief history of Intel processors and architectures
m C, assembly, machine code

m x86 basics: registers

Winter 2013 Instruction Set Architecture 4

University of Washington University of Washington

Translation Translation Impacts Performance
Code Time Compile Time Run Time m The time required to execute a program depends on:
= The program (as written in C, for instance)
® The compiler: what set of assembler instructions it translates the C
program into
g ® The instruction set architecture (ISA): what set of instructions it makes
User c Hard available to the compiler
pr(i): rcam compiler Assembler araware = The hardware implementation: how much time it takes to execute an
\ instruction
m There is a complex interaction among these
.c file .exe file
What makes programs run fast?
Winter 2013 Instruction Set Architecture 5 Winter 2013 Instruction Set Architecture 6
Instruction Set Architectures General ISA Design Decisions
m The ISA defines: = Instructions
" The system’s state (e.g. registers, memory, program counter) ® What instructions are available? What do they do?
® The instructions the CPU can execute " How are they encoded?

® The effect that each of these instructions will have on the system state

m Registers
CPU ® How many registers are there?
® How wide are they?
Memory
Registers - Memory

® How do you specify a memory location?

Winter 2013 Instruction Set Architecture 7 Winter 2013 Instruction Set Architecture 8

University of Washington

m Processors that implement the x86 ISA completely dominate
the server, desktop and laptop markets

m Evolutionary design
= Backwards compatible up until 8086, introduced in 1978
= Added more features as time goes on

m Complex instruction set computer (CISC)
= Many different instructions with many different formats
= But, only small subset encountered with Linux programs

= (as opposed to Reduced Instruction Set Computers (RISC), which use
simpler instructions)

Winter 2013 Instruction Set Architecture 9

University of Washington

Intel x86 Processors

m Machine Evolution Intel Core i7
" 486 1989 SRVl Integrated:Memory Controllér~3:Ch DDR3i
® Pentium 1993 3.1M : '
= Pentium/MMX 1997 4.5M) *
= pentiumPro 1995 6.5M Core 0 Core 1 Core2 - Core3
= Pentium llI 1999 8.2M
= Pentium 4 2001 42M

Q
= Core 2 Duo 2006 291M Shared L3 Cache
= Corei7 2008 731M

m Added Features
® |nstructions to support multimedia operations

= Parallel operations on 1, 2, and 4-byte data
® |nstructions to enable more efficient conditional operations
® More cores!

Winter 2013 Instruction Set Architecture 11

Intel x86 Evolution: Milestones

Name Date Transistors MHz
= 8086 1978 29K 5-10
® First 16-bit processor. Basis for IBM PC & DOS
= 1MB address space
= 386 1985 275K 16-33
® First 32 bit processor, referred to as IA32
= Added “flat addressing”

= Capable of running Unix
= 32-bit Linux/gcc targets i386 by default

m Pentium 4F 2005 230M 2800-3800
= First 64-bit Intel x86 processor, referred to as x86-64

Winter 2013 Instruction Set Architecture 10

University of Washington

More information

m References for Intel processor specifications:
" Intel’s “automated relational knowledgebase”:
= http://ark.intel.com/
= Wikipedia:
= http://en.wikipedia.org/wiki/List_of Intel_microprocessors

Winter 2013 Instruction Set Architecture 12

University of Washington University of Washington

x86 Clones: Advanced Micro Devices (AMD) Intel’s Transition to 64-Bit

m Historically m Intel attempted radical shift from 1A32 to 1A64 (2001)
= AMD has followed just behind Intel = Totally different architecture (Itanium) and ISA than x86
= A little bit slower, a lot cheaper = Executes IA32 code only as legacy

m Then = Performance disappointing

= Recruited top circuit designers from Digital Equipment and other AMD stepped in with evolutionary solution (2003)
downward trending companies = x86-64 (also called “AMD64”)
= Built Opteron: tough competitor to Pentium 4

m Intel felt obligated to focus on 1A64
® Hard to admit mistake or that AMD is better

m Intel announces “EM64T” extension to 1A32 (2004)
= Extended Memory 64-bit Technology
® Almost identical to AMD64!

= Developed x86-64, their own extension of x86 to 64 bits

Today: all but low-end x86 processors support x86-64
= But, lots of code out there is still just IA32

Winter 2013 Instruction Set Architecture 13 Winter 2013

Instruction Set Architecture 14
Our Coverage in 351 Definitions
m 1A32 m Architecture: (also instruction set architecture or ISA)
= The traditional x86 The parts of a processor design that one needs to understand
to write assembly code
m x86-64 = “What is directly visible to software”

® Includes: instruction set specification, registers, memory model

Microarchitecture: Implementation of the architecture
® Includes: CPU frequency, cache sizes, other implementation details

" The emerging standard — all lab assignments use x86-64!

m The ISA is an abstraction of the microarchitecture

Winter 2013 Instruction Set Architecture 15 Winter 2013 Instruction Set Architecture 16

University of Washington

Assembly Programmer’s View

CPU Memory
Addresses
Registers .
Data Object Code
Program Data
Condition Instructions | OS Data
Codes

m Programmer-Visible State
= PC: Program counter

= Address of next instruction

= Called “EIP” (IA32) or “RIP” (x86-64) Stack
= Register file
= Heavily used program data = Memory
= Condition codes = Byte addressable array
= Store status information about most " Code, user data, (some) OS data
recent arithmetic operation = Includes stack used to support

= Used for conditional branching procedures (we’ll come back to that)

Winter 2013 Instruction Set Architecture 17

University of Washington

Compiling Into Assembly

C Code Generated IA32 Assembly
int sum(int x, int y) sum:
{ pushl %ebp
int t = x+y; movl %esp, %$ebp
return t; movl 12 (%ebp) ,%eax
} addl 8 (%ebp) ,%eax
movl %ebp, $esp
popl %ebp
ret

Obtain with command
gcc -01 -S code.c

Produces file code. s

Winter 2013 Instruction Set Architecture 19

University of Washington

Turning C into Object Code

m Codeinfiles pl.c p2.c

m Compile with command: gcc -01 pl.c p2.c -o p
® Use basic optimizations (-01)
® Put resulting binary in file p

text | Cprogram (pl.c p2.c) |

Compiler (gcc -S)

text | Asm program (pl.s p2.s) |

Assembler (gcc or as)

binary | Object program (pl.o p2.0) | |Static libraries (. a) |

Linker (gcc or 1d)

binary | Executable program (p) |

Winter 2013 Instruction Set Architecture 18

University of Washington

Three Basic Kinds of Instructions

m Perform arithmetic function on register or memory data

m Transfer data between memory and register
® |Load data from memory into register
= Store register data into memory

m Transfer control
= Unconditional jumps to/from procedures
= Conditional branches

Winter 2013 Instruction Set Architecture 20

University of Washington

Assembly Characteristics: Data Types

m “Integer” data of 1, 2, 4 (1A32), or 8 (just in x86-64) bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes

= What about “aggregate” types such as arrays or structs?
= No aggregate types, just contiguously allocated bytes in memory

Winter 2013 Instruction Set Architecture 21

University of Washington

Machine Instruction Example

l int t = x+y; ‘ m C Code: add two signed integers
‘ m Assembly
= Add two 4-byte integers

l addl 8 (%ebp) , %eax

Similar to expression: « “Long” words in GCC speak

x +=y = Same instruction whether signed
More precisely: or unsigned
int eax; = Operands:
int *ebp; x: Register %eax
eax += ebp[2] y: Memory M[%ebp+8]
t: Register %eax
—-Return function value in $eax
0x401046: 03 45 08 | =Object Code
= 3-byte instruction
= Stored at address 0x401046
Winter 2013 Instruction Set Architecture 23

University of Washington

Object Code

Code for sum m Assembler

0%x401040 <sum>: ® Translates . s into .o

0x55 = Binary encoding of each instruction
g"sg = Nearly-complete image of executable code
xXe
0x8b = Missing links between code in different files
0x45 | rotal of 13 bytes ® Linker
0x0c . .
0x03 ° Eachinstruction = Resolves references between object files
0x45 1,2, or 3 bytes and (re)locates their data
0x08 e Starts at address ® Combines with static run-time libraries
gx89 0x401040 = E.g.,codeformalloc, printf
XeC .« Not at all obvious
Some libraries are dynamically linked
0x5d where each instruction o v y .
0xe3 gtarts and ends = Linking occurs when program begins
execution
Winter 2013 Instruction Set Architecture 22

University of Washington

Disassembling Object Code

Disassembled

00401040 <_sum>:
0: 55 push %ebp
1: 89 e5 mov %esp, $ebp
g3 8b 45 Oc mov Oxc (%ebp) , $eax
6: 03 45 08 add 0x8 (%ebp) , $eax
9: 89 ec mov %ebp, $esp
b: 5d pop %ebp
@8 c3 ret

m Disassembler
objdump -d p
= Useful tool for examining object code (man 1 objdump)
= Analyzes bit pattern of series of instructions (delineates instructions)
® Produces near-exact rendition of assembly code
= Can be run on either p (complete executable) or pl.0/p2.o file

Winter 2013 Instruction Set Architecture 24

University of Washington

Alternate Disassembly

Object Disassembled

0x401040: 0x401040 <sum>: push %ebp
0x55 0x401041 <sum+1>: mov %esp, $ebp
0x89 0x401043 <sum+3>: mov Oxc (%ebp) , $eax
Oxe5 0x401046 <sum+6>: add 0x8 (%ebp) , $eax
0x8b 0x401049 <sum+9>: mov %ebp, $esp
0x45 0x40104b <sum+ll>: pop %ebp
0x0c 0x40104c <sum+1l2>: ret
0x03
0x45 L
0x08 m Within gdb debugger
0x89 gdb p
Oxec :
0x5d disassemble sum
0xc3 (disassemble function)

x/13b sum

(examine the 13 bytes starting at sum)

Winter 2013 Instruction Set Architecture 25

University of Washington

What Is A Register?

m A location in the CPU that stores a small amount of data,
which can be accessed very quickly (once every clock cycle)

m Registers are at the heart of assembly programming
= They are a precious commodity in all architectures, but especially x86

Winter 2013 Instruction Set Architecture 27

University of Washington

What Can be Disassembled?

% objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000: 55 push %ebp
30001001: 8b ec mov %esp, %$ebp
30001003: 6a ff push SOxffffffff

30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc91

m Anything that can be interpreted as executable code
m Disassembler examines bytes and reconstructs assembly source

Winter 2013 Instruction Set Architecture 26

University of Washington

Integer Registers (1A32) Origin
(mostly obsolete)
~
| %$eax | accumulate
o | $ecx | counter
3
s | $edx | data
i
[
] | %ebx | base
[
o0
- source
%esi index
: destination
L | $edi | index
| | stack
%esp pointer
base
| %ebp | pointer
\)
Y
32-bits wide
Winter 2013 Instruction Set Architecture 28

University of Washington

Integer Registers (I1A32) Origin
(mostly obsolete)
. |
| %eax %ax | %ah | %al | accumulate
® | %ecx $cx | $ch | %cl | counter
v
9 |
g | | %edx sax[san | sar | e
g | %ebx sbx| soh | w1 | base
gjn .] source
| %esi %si | | soure
[seai st | | e
] stack
| %esp bsp | l pointer
| base
| %ebp *op | | pointer
\)
16-bit virtuYaI registers
(backwards compatibility)
Winter 2013 Instruction Set Architecture 29

University of Washington

Summary: Machine Programming

m What is an ISA (Instruction Set Architecture)?

= Defines the system'’s state and instructions that are available to the
software

History of Intel processors and architectures
= Evolutionary design leads to many quirks and artifacts

C, assembly, machine code

= Compiler must transform statements, expressions, procedures into low-
level instruction sequences

x86 registers
= Very limited number
® Not all general-purpose

Winter 2013 Instruction Set Architecture 31

x86-64 Integer Registers

= Extend existing registers, and add 8 new ones; all accessible as 8, 16, 32, 64 bits.

Winter 2013

University of Washington

64-bits wide

A
[rax e s |
| sbx |5x9
|$rex |sr10
| $rax sedx |4r11
|srsi sr12
|%rdi |%r13
[szer =2
[s2p [s21s

Instruction Set Architecture

30

