The Hardware/Software Interface

CSE351 Winter 2013

Floating-Point Numbers

Today's Topics

- Background: fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- **■** Floating-point in C

Data & addressing Roadmap Integers & floats Machine code & C Java: x86 assembly car *c = malloc(sizeof(car)); Car c = new Car(); programming c->miles = 100; c.setMiles(100); Procedures & c->gals = 17;c.setGals(17); stacks float mpg = float mpg = get_mpg(c); Arrays & structs free(c); c.getMPG(); Memory & caches Processes Assembly get_mpg: pushq %rbp Virtual memory language: %rsp, %rbp movq Memory allocation Java vs. C popq %rbp ret OS: Machine 0111010000011000 100011010000010000000010 code: 1000100111000010 Windows 8. Mac 110000011111101000011111 Computer system:

Fractional Binary Numbers

- What is 1011.101₂?
- How do we interpret fractional decimal numbers?
 - e.g. 107.95₁₀
 - Can we interpret fractional binary numbers in an analogous way?

Tinter 2013 Floating Point Numbers 3 Winter 2013 Floating Point Numbers

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-j}^{i} b_k \cdot 2$

Winter 2013

Floating Point Numbers

_

Representable Values

- Limitations of fractional binary numbers:
 - Can only exactly represent numbers that can be written as x * 2y
 - Other rational numbers have repeating bit representations

■ Value Representation

- **1/3** 0.01010101[01]...₂
- 1/50.001100110011[0011]...
- **1/10** 0.0001100110011[0011]...,

Fractional Binary Numbers: Examples

■ Value Representation

5 and 3/4
 2 and 7/8
 101.11₂
 63/64
 101.11₂
 0.11111₂

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of the form 0.111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Shorthand notation for all 1 bits to the right of binary point: 1.0ε

Winter 2013 Floating Point Numbers

Fixed Point Representation

- We might try representing fractional binary numbers by picking a fixed place for an implied binary point
 - "fixed point binary numbers"
- Let's do that, using 8-bit fixed point numbers as an example
 - #1: the binary point is between bits 2 and 3 b₇ b₆ b₅ b₄ b₃ [.] b₂ b₁ b₀
 - #2: the binary point is between bits 4 and 5 b₇ b₆ b₅ [.] b₄ b₃ b₂ b₁ b₀
- The position of the binary point affects the range and precision of the representation
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers

Floating Point Numbers 7 Winter 2013 Floating Point Numbers 8

Fixed Point Pros and Cons

Pros

- It's simple. The same hardware that does integer arithmetic can do fixed point arithmetic
 - In fact, the programmer can use ints with an implicit fixed point
 - ints are just fixed point numbers with the binary point to the right of bo

Cons

- There is no good way to pick where the fixed point should be
 - Sometimes you need range, sometimes you need precision the more you have of one, the less of the other.

Winter 2013 Floating Point Numbers

Floating Point Numbers

Floating Point Representation

Numerical form:

$$V_{10} = (-1)^{5} * M * 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand (mantissa) M normally a fractional value in range [1.0,2.0)
- Exponent E weights value by a (possibly negative) power of two

Representation in memory:

- MSB s is sign bit s
- exp field encodes *E* (but is *not equal* to E)
- frac field encodes M (but is not equal to M)

s exp frac

IEEE Floating Point

Analogous to scientific notation

- Not 12000000 but 1.2 x 10⁷; not 0.0000012 but 1.2 x 10⁻⁶
 - (write in C code as: 1.2e7; 1.2e-6)

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs today

Driven by numerical concerns

- Standards for handling rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Winter 2013 10

Precisions

Single precision: 32 bits

■ Double precision: 64 bits

Floating Point Numbers 11 12

Normalization and Special Values

V = (-1)^S * M * 2^E s exp frac

- "Normalized" means the mantissa M has the form 1.xxxxx
 - 0.011 x 2⁵ and 1.1 x 2³ represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don't bother to store it
- How do we represent 0.0? Or special / undefined values like 1.0/0.0?

Winter 2013 Floating Point Numbers 13

Normalized Values

- Condition: $exp \neq 000...0$ and $exp \neq 111...1$
- Exponent coded as biased value: E = exp Bias
- exp is an unsigned value ranging from 1 to $2^{k}-2$ (k == # bits in exp)
- $Bias = 2^{k-1} 1$
- Single precision: 127 (so *exp*: 1...254, *E*: -126...127)
- Double precision: 1023 (so exp: 1...2046, E: -1022...1023)
- These enable negative values for E, for representing very small values
- Significand coded with implied leading 1: $M = 1.xxx...x_2$
 - xxx...x: the n bits of frac
 - Minimum when 000...0 (M = 1.0)
 - Maximum when 111...1 $(M = 2.0 \varepsilon)$
 - Get extra leading bit for "free"

Normalization and Special Values

V = (-1)^S * M * 2^E s exp frac

- "Normalized" means the mantissa M has the form 1.xxxxx
 - 0.011 x 2⁵ and 1.1 x 2³ represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don't bother to store it
- Special values:
 - The bit pattern 00...0 represents zero
 - If exp == 11...1 and frac == 00...0, it represents ∞

• e.g.
$$1.0/0.0 = -1.0/-0.0 = +\infty$$
, $1.0/-0.0 = -1.0/0.0 = -\infty$

- If exp == 11...1 and frac!= 00...0, it represents NaN: "Not a Number"
 - Results from operations with undefined result, e.g. sqrt(–1), ∞ $\infty,$ ∞ * 0

inter 2013 Floating Point Numbers 14

Normalized Encoding Example

```
V = (-1)<sup>S</sup> * M * 2<sup>E</sup> s exp frac
```

- value: float f = 12345.0;
 12345₁₀ = 11000000111001₂
 = 1.100000111001, x 2¹³ (normalized form)
- Significand:

```
M = 1.100000111001_2
frac= 1000000111001_0000000000_2
```

■ Exponent: E = exp - Bias, so exp = E + Bias

E = 13 Bias = 127exp = 140 = 10001100,

Result:

r 2013 Floating Point Numbers 15 Winter 2013 Floating Point Numbers 16

How do we do operations?

 Unlike the representation for integers, the representation for floating-point numbers is not exact

Winter 2013 Floating Point Numbers

Rounding modes

■ Possible rounding modes (illustrate with dollar rounding):

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
■ Round-toward-zero	\$1	\$1	\$1	\$2	-\$1
Round-down (-∞)	\$1	\$1	\$1	\$2	- \$2
Round-up (+∞)	\$2	\$2	\$2	\$3	- \$1
Round-to-nearest	\$1	\$2	??	??	??
Round-to-even	\$1	\$2	\$2	\$2	- \$2

- What could happen if we're repeatedly rounding the results of our operations?
 - If we always round in the same direction, we could introduce a statistical bias into our set of values!
- Round-to-even avoids this bias by rounding up about half the time, and rounding down about half the time
 - Default rounding mode for IEEE floating-point

Floating Point Operations: Basic Idea

- $\mathbf{x} +_{\mathbf{f}} \mathbf{y} = Round(\mathbf{x} + \mathbf{y})$
- $\mathbf{x} \times_f \mathbf{y} = Round(\mathbf{x} \times \mathbf{y})$
- Basic idea for floating point operations:
 - First, compute the exact result
 - Then, *round* the result to make it fit into desired precision:
 - Possibly overflow if exponent too large
 - Possibly drop least-significant bits of significand to fit into frac

Winter 2013 Floating Point Numbers 18

Mathematical Properties of FP Operations

- If overflow of the exponent occurs, result will be ∞ or -∞
- Floats with value ∞, -∞, and NaN can be used in operations
 - Result is usually still ∞ , $-\infty$, or NaN; sometimes intuitive, sometimes not
- Floating point operations are not always associative or distributive, due to rounding!
 - (3.14 + 1e10) 1e10 != 3.14 + (1e10 1e10)
 - 1e20 * (1e20 1e20) != (1e20 * 1e20) (1e20 * 1e20)

ter 2013 Floating Point Numbers 19 Winter 2013 Floating Point Numbers 20

17

University of Washingt

Floating Point in C

C offers two levels of precision

float single precision (32-bit) double double precision (64-bit)

- Default rounding mode is round-to-even
- #include <math.h> to get INFINITY and NAN constants
- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results
 - Just avoid them!

Winter 2013 Floating Point Numbers

rsity of Washir

21

Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some "simple fractions" have no exact representation (e.g., 0.2)
 - Can also lose precision, unlike ints
 - "Every operation gets a slightly wrong result"
- Mathematically equivalent ways of writing an expression may compute different results
 - Violates associativity/distributivity
- Never test floating point values for equality!

Floating Point in C

- Conversions between data types:
 - Casting between int, float, and double changes the bit representation!!
 - int → float
 - May be rounded; overflow not possible
 - int → double or float → double
 - Exact conversion, as long as int has ≤ 53-bit word size
 - double **or** float **→** int
 - Truncates fractional part (rounded toward zero)
 - Not defined when out of range or NaN: generally sets to Tmin

Winter 2013 Floating Point Numbers 22

Additional details

- Denormalized values to get finer precision near zero
- Tiny floating point example
- Distribution of representable values
- Floating point multiplication & addition
- Rounding

nter 2013 Floating Point Numbers 23 Winter 2013 Floating Point Numbers 24

University of Washingt

Denormalized Values

- **■** Condition: **exp** = 000...0
- Exponent value: E = exp Bias + 1 (instead of E = exp Bias)
- Significand coded with implied leading 0: M = 0.xxx...x₂
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents value 0
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, frac ≠ 000...0
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced

Winter 2013 Floating Point Numbers

25

Visualization: Floating Point Encodings

Special Values

- **■** Condition: **exp** = **111...1**
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -1.0/0.0 = -\infty$
- Case: exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., $\operatorname{sqrt}(-1)$, $\infty \infty$, $\infty * 0$

Winter 2013 Floating Point Numbers 26

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit.
 - the next four bits are the exponent, with a bias of 7.
 - the last three bits are the frac
- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

nter 2013 Floating Point Numbers 27 Winter 2013 Floating Point Numbers 28

Dynamic Range (Positive Only)

	s exp	frac	E	Value	
Denormalized	0 0000 0 0000 0 0000	001	-6 -6 -6	0 1/8*1/64 = 1/512 closest to zero 2/8*1/64 = 2/512	
numbers	 0 0000 0 0000		-6 -6	6/8*1/64 = 6/512 7/8*1/64 = 7/512 largest denorm	
	0 0001 0 0001 		-6 -6	8/8*1/64 = 8/512 smallest norm 9/8*1/64 = 9/512	
Normalized numbers	0 0110 0 0110 0 0111	111	-1 -1 0	14/8*1/2 = 14/16 15/8*1/2 = 15/16 closest to 1 below 8/8*1 = 1	~
	0 0111 0 0111		0	9/8*1 = 9/8 closest to 1 abov 10/8*1 = 10/8	e
	0 1110 0 1110	111	7 7	14/8*128 = 224 15/8*128 = 240 largest norm	
	0 1111	000	n/a	inf	

Winter 2013 Floating Point Numbers 29

Distribution of Values (close-up view)

■ 6-bit IEEE-like format

• e = 3 exponent bits

■ f = 2 fraction bits

■ Bias is 3

Distribution of Values

■ 6-bit IEEE-like format

e = 3 exponent bits

f = 2 fraction bits

• Bias is $2^{3-1}-1=3$

Notice how the distribution gets denser toward zero.

Winter 2013 Floating Point Numbers 30

Interesting Numbers

{single,double}

Description	exp	frac	Numeric Value
■ Zero	0000	0000	0.0
 Smallest Pos. Denorm. Single ≈ 1.4 * 10⁻⁴⁵ Double ≈ 4.9 * 10⁻³²⁴ 	0000	0001	2-{23,52} * 2-{126,1022}
 Largest Denormalized Single ≈ 1.18 * 10⁻³⁸ Double ≈ 2.2 * 10⁻³⁰⁸ 	0000	1111	$(1.0 - \varepsilon) * 2^{-\{126,1022\}}$
Smallest Pos. Norm.Just larger than largest de		0000 d	1.0 * 2- {126,1022}
One	0111	0000	1.0
 Largest Normalized Single ≈ 3.4 * 10³⁸ Double ≈ 1.8 * 10³⁰⁸ 	1110	1111	$(2.0 - \varepsilon) * 2^{\{127,1023\}}$

Winter 2013 Floating Point Numbers 31 Winter 2013 Floating Point Numbers 32

University of Washingto

33

Special Properties of Encoding

- Floating point zero (0+) exactly the same bits as integer zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider 0⁻ = 0⁺ = 0
 - NaNs problematic
 - · Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Winter 2013 Floating Point Numbers

Floating Point Numbers

34

Floating Point Addition

 $(-1)^{s1}$ M1 2^{E1} + $(-1)^{s2}$ M2 2^{E2} Assume E1 > E2

- Exact Result: (-1)^s M 2^E
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1

+ (-1)^{s1} M2 + (-1)^s M2

E1-E2

Fixing

- If M ≥ 2, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit frac precision

Floating Point Multiplication

 $(-1)^{s1}$ M1 2^{E1} * $(-1)^{s2}$ M2 2^{E2}

■ Exact Result: (-1)^s M 2^E

• Sign s: s1 ^ s2 // xor of s1 and s2

Significand M: M1 * M2Exponent E: E1 + E2

Fixing

- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Closer Look at Round-To-Even

- Default Rounding Mode
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated
- Applying to Other Decimal Places / Bit Positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth

 1.2349999
 1.23
 (Less than half way)

 1.2350001
 1.24
 (Greater than half way)

 1.2350000
 1.24
 (Half way—round up)

 1.2450000
 1.24
 (Half way—round down)

r 2013 Floating Point Numbers 35 Winter 2013 Floating Point Numbers 36

Rounding Binary Numbers

Binary Fractional Numbers

"Half way" when bits to right of rounding position = 100....

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.101002	10.102	(1/2—down)	2 1/2

Winter 2013 Floating Point Numbers

Memory Referencing Bug

```
double fun(int i)
{
  volatile double d[1] = {3.14};
  volatile long int a[2];
  a[i] = 1073741824; /* Possibly out of bounds */
  return d[0];
}
```

```
fun(0) -> 3.14
fun(1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14, then segmentation fault
```

Explanation:

Floating Point and the Programmer

```
#include <stdio.h>
int main(int argc, char* argv[]) {
  float f1 = 1.0;
  float f2 = 0.0;
  int i;
  for ( i=0; i<10; i++ ) {
   f2 += 1.0/10.0;
  printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
                                                        0x3f800000 0x3f800001
  printf("f1 = %10.8f\n", f1);
                                                        f1 = 1.000000000
  printf("f2 = %10.8f\n\n", f2);
                                                        f2 = 1.000000119
  f1 = 1E30:
                                                        f1 == f3? yes
 f2 = 1E-30;
  float f3 = f1 + f2;
 printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );
  return 0;
```

Winter 2013 Floating Point Numbers 38

Representing 3.14 as a Double FP Number

- **3.14** = 11.0010 0011 1101 0111 0000 1010 000...
- (-1)^s M 2^E
 - \blacksquare S = 0 encoded as 0
 - M = 1.1001 0001 1110 1011 1000 0101 000.... (leading 1 left out)
 - E = 1 encoded as 1024 (with bias)

```
| s | exp (11) | frac (first 20 bits) | 0 100 0000 0000 | 1001 0001 1110 1011 1000 | frac (the other 32 bits) | 0101 0000 ...
```

Floating Point Numbers 39 Winter 2013 Floating Point Numbers 40

37

Memory Referencing Bug (Revisited)

```
double fun(int i)
         volatile double d[1] = {3.14};
         volatile long int a[2];
         a[i] = 1073741824; /* Possibly out of bounds */
      fun(0) ->
                      3.14
      fun(1) ->
                       3.14
                      3.1399998664856
       fun(2) ->
                      2.00000061035156
       fun(3) ->
       fun(4) ->
                       3.14, then segmentation fault
       Saved State
           d7 ... d4 0100 0000 0000 1001 0001 1110 1011 1000
                                                                  Location
           d3 ... d0 0101 0000 ...
                                                                  accessed
               a[1]
                                                            1
                                                                  by fun(i)
               a[0]
                                                            0
                                  Floating Point Numbers
Winter 2013
```

Memory Referencing Bug (Revisited)

```
double fun(int i)
  volatile double d[1] = {3.14};
  volatile long int a[2];
  a[i] = 1073741824; /* Possibly out of bounds */
  return d[0];
fun(0) ->
               3.14
fun(1) ->
              3.14
fun(2) ->
               3.1399998664856
              2.00000061035156
fun(3) ->
fun(4) ->
              3.14, then segmentation fault
Saved State
    d7 ... d4 0100 0000 0000 0000 0000 0000 0000
                                                       Location
    d3 ... d0 0101 0000 ...
                                                  2
                                                       accessed
        a[1]
                                                  1
                                                       by fun(i)
        a[0]
                                                  0
```

Memory Referencing Bug (Revisited)

```
double fun(int i)
        volatile double d[1] = {3.14};
        volatile long int a[2];
        a[i] = 1073741824; /* Possibly out of bounds */
      fun(0) ->
                    3.14
      fun(1) ->
                    3.14
                    3.1399998664856
      fun(2) ->
                    2.00000061035156
      fun(3) ->
      fun(4) ->
                    3.14, then segmentation fault
      Saved State
                                                      4
          d7 ... d4 0100 0000 0000 1001 0001 1110 1011 1000
                                                           Location
          accessed
              a[1]
                                                           by fun(i)
              a[0]
Winter 2013
                              Floating Point Numbers
                                                                    42
```

Winter 2013 Floating Point Numbers 44