University of Washington

The Hardware/Software Interface
CSE351 Winter 2013

Integers

y of Washington

Today’s Topics

Representation of integers: unsigned and signed
Casting
Arithmetic and shifting

u
|
|
m Sign extension

Winter 2013 Integers 3

Roadmap

C:

Java:

car *c = malloc (sizeof (car));
c->miles = 100;

Car c = new Car()
c.setMiles (100) ;

;

University of Washington

Data & addressing
Integers & floats
Machine code & C
x86 assembly
programming
Procedures &
stacks

Arrays & structs
Memory & caches
Processes

Virtual memory
Memory allocation
Javavs. C

Windows 8 Mac L
v

i

c->gals = 17; c.setGals (17) ;
float mpg = get mpg(c); float mpg =
free(c) ; c.getMPG() ;
~
Assembly get_mpg:
. pushqg %$rbp
language: movq %$rsp, %rbp
popq %rbp
ret
I 0s:
Vv
Machine 0111010000011000 --
de: 100011010000010000000010
code: 1000100111000010 ar]
110000011111101000011111
[
Computer
system:

But before we get to integers....

y of Washington

= How about encoding a standard deck of playing cards?

m 52 card

s in 4 suits

= How do we encode suits, face cards?

m What operations do we want to make easy to implement?
= Which is the higher value card?
= Are they the same suit?

Winter 2013

Iy 2
3 =
*

|
vl

-

-

cua

B
'

fe o [0 & [So & [l &

KR RN R

Y
&

5

L]

k
vl

-

e

o

io o 300 Saa|las

v v} v vl v vl vl v

..

(4

=
0y

<>

oy

<o

lvw [Sve|vew Zv‘v év‘v

8 ool & all aasl &all aaf

22¢<|ee

€

+5)

<o

LR R AR AR X 2 3 O

20 0[S0 ¢ [0 o Zo‘o Eo‘o

XX
0

XY KX KX KXY KXY

adit i R IR Y

Integers

1/14/13

University of Washington

Two possible representations

m 52 cards — 52 bits with bit corresponding to card setto 1

(NN SN EEEESE NS S EEEESSEESESSEEESENEEENENENNENENENENEENENE NN]
low-order 52 bits of 64-bit word

" “One-hot” encoding

® Drawbacks:
= Hard to compare values and suits
= Large number of bits required

m 4 bits for suit, 13 bits for card value — 17 bits with two setto 1

= “Two-hot” (?) encoding
= Easier to compare suits and values
= Still an excessive number of bits

University of Washington

Some basic operations

m Checking if two cards have the same suit:
#define SUIT MASK 0x30
char arrayl[5]; // represents a 5 card hand

char cardl, card2; // two cards to compare

SUIT_MASK = 0x30;

[ofof1]1]ofofo]0]

cardl = array[0];
card2 = array([l];

if sameSuitP(cardl, card2) {

suit value

bool sameSuitP (char cardl, char card2) {
return (! (cardl & SUIT MASK) " (card2 & SUIT MASK));
//return (cardl & SUIT_MASK) == (card2 & SUIT_MASK);

University of Washington

Two better representations

m Binary encoding of all 52 cards — only 6 bits needed

low-order 6 bits of a byte

® Fits in one byte

® Smaller than one-hot or two-hot encoding, but how can we make value
and suit comparisons easier?

m Binary encoding of suit (2 bits) and value (4 bits) separately

suit value

= Also fits in one byte, and easy to do comparisons

University of Washington

Some basic operations

m Comparing the values of two cards:
#define SUIT MASK 0x30

#define VALUE MASK 0x0F

char array[5]; // represents a 5 card hand
char cardl, card2; // two cards to compare

cardl = array[0];

card2 = array[l]; | VALUE_MASK = 0xOF;

[ofofofofa[a]a]1]
if greaterValue (cardl, card2) { -

suit value
bool greaterValue (char cardl, char card2) {
return ((unsigned int) (cardl & VALUE MASK) >
(unsigned int) (card2 & VALUE MASK));

1/14/13

University of Washington

Encoding Integers

m The hardware (and C) supports two flavors of integers:
® unsigned — only the non-negatives
= signed — both negatives and non-negatives

m There are only 2V distinct bit patterns of W bits, so...
= Can't represent all the integers
= Unsigned values are 0 ... 2W-1
= Signed values are -2W1 .., 2W-1-1

m Reminder: terminology for binary representations:

“Most-significant” or “Least-significant” or
“high-order” bit(s) “low-order” bit(s)

0110010110101001

er 2013 Integers 9

University of Washington

Signed Integers

m Let's do the natural thing for the positives
® They correspond to the unsigned integers of the same value
= Example (8 bits): 0x00 = 0, 0x01 = 1, ..., Ox7F = 127
m But, we need to let about half of them be negative
= Use the high order bit to indicate negative: call it the “sign bit”
= Call this a “sign-and-magnitude” representation
= Examples (8 bits):
= 0x00 = 00000000, is non-negative, because the sign bit is 0
= Ox7F=01111111, is non-negative
= 0x85 = 10000101, is negative
= 0x80 = 10000000, is negative...

University of Washington

Unsigned Integers

m Unsigned values are just what you expect
" b,bgbsh,bybbiby = b,27 + 526 + b.25 + ... + b, 21 + by20
= Useful formula: 1+2+4+8+...+2N1=2N-1

= You add/subtract them using the normal 00111111 63
“carry/borrow” rules, just in binary +00000001 | | +_8
01000000| | 71

Sign-and-Magnitude Negatives

m How should we represent -1 in binary?

® Sign-and-magnitude: 10000001,
Use the MSB for + or -, and the other bits to give magnitude

1/14/13

1/14/13

University of Washington University of Washington

Sign-and-Magnitude Negatives

m How should we represent -1 in binary?
® Sign-and-magnitude: 10000001,
Use the MSB for + or -, and the other bits to give magnitude
(Unfortunate side effect: there are two representations of 0!)

Sign-and-Magnitude Negatives

m How should we represent -1 in binary?

® Sign-and-magnitude: 10000001,
Use the MSB for + or -, and the other bits to give magnitude
(Unfortunate side effect: there are two representations of 0!)

= Another problem: math is cumbersome

-7 +0 = Example: -7 +0
1111 0000 4-31=4+(3) 1111 0000
_s5 /1110 0001 \4 2 _5 /1110 0001 \ 4 2
1101 0010 e 1101 0010
=4 [1100 oo11 |" 3 1011 =4 [1100 oo11 |3
1111
_3\1011 0100 |, 4

1010
1001
1000

0111

University of Washington

Two’s Complement Negatives

m How should we represent -1 in binary?
= Rather than a sign bit, let MSB have same value, but negative weight
= W-bit word: Bits 0, 1, ..., W-2 add 29, 21, ..., 2W-2 to value of integer
when set, but bit W-1 adds -2W* when set
= e.g. unsigned 1010,: 1*23+0%22+1*2'+0*20=10,,
2’s comp. 1010,: -1*¥23 + 0%22 + 1*21 + 0*20= -6,
= So-1representedas 1111,; all
negative integers still have MSB = 1

1010
1001
1000

0111

University of Washington

Two’s Complement Arithmetic

m The same addition procedure works for both unsigned and
two’s complement integers
® Simplifies hardware: only one adder needed
= Algorithm: simple addition, discard the highest carry bit
= Called “modular” addition: result is sum modulo 2%

m Examples:

= Advantages of two’s complement: 4 0100 4 0100 -4 1100
only one zero, simple arithmetic + 3 + 0011 -3 + 1101 + 3 + 0011

= To get negative representation of =7 =0111 =1 1 0001 -1 1111
any integer, take bitwise complement drop carry = 0001

and then add one!
~x + 1= -x

14

16

University of Washington

Two’s Complement

m Why does it work?
= Put another way: given the bit representation of a positive integer, we
want the negative bit representation to always sum to O (ignoring the
carry-out bit) when added to the positive representation

® This turns out to be the bitwise complement plus one
= What should the 8-bit representation of -1 be?

00000001

+?222?222?? (we want whichever bit string gives the right result)
00000000
00000010 00000011

+222222°2°7 +222°22°2°2°

00000000 00000000

University of Washington

Two’s Complement

m Why does it work?
® Put another way: given the bit representation of a positive integer, we
want the negative bit representation to always sum to O (ignoring the
carry-out bit) when added to the positive representation
= This turns out to be the bitwise complement plus one
= What should the 8-bit representation of -1 be?

00000001
+11111111 (we want whichever bit string gives the right result)
00000000
00000010 00000011
+11111110 +11111101
00000000 00000000
o Integ 19

University of Washington

Two’s Complement

m Why does it work?
= Put another way: given the bit representation of a positive integer, we
want the negative bit representation to always sum to O (ignoring the
carry-out bit) when added to the positive representation
® This turns out to be the bitwise complement plus one
= What should the 8-bit representation of -1 be?
00000001
+11111111 (we want whichever bit string gives the right result)
00000000

00000010 00000011

00000000 00000000

University of Washington

Unsigned & Signed Numeric Values

X Unsigned| Signed | puh signed and unsigned integers
0000 o g have limits
0001 1 L « If you compute a number that is too
0010 2 2 big, you wrap: 6+4=? 15U+2U="?
0011 3 3
0100 2 2 « If you compute a number that is too
0101 : 5 small, you wrap: -7-3=? 0U-2U=?
0110 6 6 « Answers are only correct mod 2°
0111 7 7
1000 8 -8 « The CPU may be capable of “throwing
1001 9 7 an exception” for overflow on signed
1010 10 —6 values
1011 11 -5
1100 12 4 « Itwon't for unsigned
1101 13 -3 . But Cand Java just cruise along silently
1110 14 -2 when overflow occurs...
1111 15 -1

1/14/13

University of Washington

Visualizations
m Same W bits interpreted as signed vs. unsigned:
2W 2W
+2w-1 2w-1Unsigned ow-1 +2w-1
Two's Unsigned Two's
complement 0 0 0 complement
_2w—1 _2W_1
m Two’s complement (signed) addition: x and y are W bits wide
X+y
4w Positive overflow
Case 4
+2w-T +2w-
Case 3
0 0
Case 2
_2w—1 _2w—1
Case 1 .
_ow Negative overflow
er 2013 Integers 21
University of Washington
Values for Different Word Sizes
w
8 16 32 64
UMax | 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax | 127 32,767 2,147,483,647 9,223,372,036,854,775,807
T™in | -128] -32,768 -2,147,483,648 -9,223,372,036,854,775,808

m Observations m CProgramming

" |TMin| = TMax+1 = #include <limits.h>
= Asymmetric range = Declares constants, e.g.:
" UMax = 2*TMax+1 = ULONG_MAX
= LONG_MAX
" LONG_MIN

® Values are platform specific
= See: /usr/include/limits.h on
Linux

Values To Remember

m Unsigned Values m Two’s Complement Values

= UMin = 0 = TMin = —2wt
= 000..0 = 100..0
= UMax = 2w—-1 = TMax = 2wl-1
= 111..1 = 011..1
" Negative 1

= 111..1 OxFFFFFFFF (32 bits)

Values for W =16

Decimal Hex Binary
UMax 65535 FF FF| 11111111 11111111
TMax 32767| 7F FF| 01111111 11111111
TMin -32768| 80 00| 10000000 00000000
-1 -1 FF FF| 11111111 11111111
0 0| 00 00| 00000000 00000000
t 3 Integs 22

University of Washington

Signed vs. Unsigned in C

m Constants
= By default are considered to be signed integers
= Use “U” suffix to force unsigned:
= 0U, 4294967259U

1/14/13

University of Washington

Signed vs. Unsigned in C

m Casting
» int tx, ty;
* unsigned ux, uy;
= Explicit casting between signed & unsigned:
= tx
» uy = (unsigned) ty;
= |mplicit casting also occurs via assignments and function calls:

(int) ux;

= tx = ux;

"uy = ty;

= The gcc flag -Wsign-conversion produces warnings for implicit casts,
but -Wall does not!

® How does casting between signed and unsigned work — what values are
going to be produced?

= Bits are unchanged, just interpreted differently!

er 2013 Integers 25

University of Washington

Shift Operations

m Leftshift: x<<y Argument x 01100010
= Shift bit-vector x left by y positions
= Throw away extra bits on left
= Fill with Os on right Logical >> 2 00011000
= Equivalent to multiplying by 2V (if no bits lost) Arithmetic >>2 | 00011000
m Rightshift: x>>y
= Shift bit-vector x right by y positions

<<3 00010000

« Throw away extra bits on right Argument x 10100010

= Logical shift (for unsigned values) <<3 00010000
= Fill with Os on left

= Arithmetic shift (for signed values)
= Replicate most significant bit on left Arithmetic >>2 | 11101000

Logical >>2 00101000

= Maintains sign of x

= Equivalent to dividing by 2¥ . .
g &by Undefined behavior when

= Correct rounding (towards 0) requires y <0 ory = word._size

some care with signed numbers
ter 2013 Integers 27

1/14/13

Casting Surprises

m Expression Evaluation

= If you mix unsigned and signed in a single expression, then
signed values implicitly cast to unsigned

® Including comparison operations <, >, ==, <=, >=

= Examples for W=32: TMIN =-2,147,483,648 TMAX = 2,147,483,647

m Constant, Constant, Relation Evaluation
0 ou == unsigned
-1 0 < signed
-1 ou > unsigned
2147483647 -2147483648 > signed
2147483647U -2147483648 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed
Winter 2013 Integers 26

University of Washington

Using Shifts and Masks

m Extract the 2nd most significant byte of an integer:
® First shift, then mask: (x >> 16) & OxFF

X 01100001{01100010|01100011 01100100

x>>16 00000000 00000000 01100001)01100010

00000000 00000000 00000000 11111111
00000000 00000000 00000000 01100010

(x >>16) & OxFF

m Extract the sign bit of a signed integer:
" (x>>31)&1 -needthe “&1” to clear out all other bits except LSB
m Conditionals as Boolean expressions (assuming x is 0 or 1)
= if (x) a=y else a=z; whichisthesameas a=x?y:z
= Can be re-written (assuming arithmetic right shift) as:
a=((x<<31)>>31)&y+((Ix)<<31)>>31) &z

Winter 2013 Integers 28

Sign Extension

m Task:
= Given w-bit signed integer x
= Convert it to w+k-bit integer with same value

University of Washington

= Rule:
= Make k copies of sign bit:
® X Xy X1 Xyt s Xy e Xo
k copies of MSB w
x OI1 .- TTT]
X I TIIII1T .- 171711
k w

Winter 2013 Integers

29

University of Washington

Sign Extension Example

m Converting from smaller to larger integer data type
m C automatically performs sign extension

short int x = 12345;
int ix = (int) x;
short int y = -12345;
int iy = (int) y;
Decimal Hex Binary
X 12345 30 39 00110000 01101101
ix 12345| 00 00 30 39 00000000 00000000 00110000 01101101
vy -12345 CF C7 11001111 11000111
iy -12345| FF FF CF C7 11111111 11111111 11001111 11000111
Winter 2013 Integers 30

1/14/13

