University of Washington

University of Washington

Announcements

Lab 0 is due Friday (no late days)

Section 1 tomorrow
= |f possible, bring your laptop

The Hardware/Software Interface

CSE351 Winter 2013 Visit the website and use:

® The link to the CSE home VM
® The speedometer

. = The anonymous feedback link
Memory, Data & Addressing

® The discussion board!
Visit office hours

Course Speed
(click to vote)

Lab 1 posted today, due next Friday

Winter 2013 Memory 2

University of Washington University of Washington

Data & addressing
Roadmap Integgrs&ﬂoats Today's Topics
C: Java: Machine code & C

car *c = malloc(sizeof (car)) ;
c->miles = 100;
c->gals = 17;

Car c = new Car();
c.setMiles (100) ;
c.setGals (17) ;

x86 assembly
programming
Procedures &
stacks

Representing information as bits and bytes
Organizing and addressing data in memory

float mpg = get mpg(c) ; float mpg =
free(c) ; c.getMPG() ; /'\\nrrays & ;truct; Manipulating data in memory using C
~ — emory & caches B . . .
oolean algebra and bit-level manipulations
Assembly | get_mpg: Processes 4 p
language: EEEAE ST Virtual memory
movq Gy, s Memory allocation
popq $rbp Javavs. C
ret
1 :
& 0S
Machine 0111010000011000 1 f
de: 100011010000010000000010
code: 1000100111000010 | § .
110000011111101000011111 Windows 8 Mac S
Il
v Vv
Computer
system:

Winter 2013

University of Washington

University of Washington

Hardware: Logical View Hardware: Semi-Logical View

Intel* Core™2 Duo Processor
Intel* Core™2 Qun Processor

msrB/s

Memory
Ctaphics 16Gals DDR2 or DDR3
or 6.4 GB/s or 8.5 GB/s

unnz r DDR:
s $Cbl or 85 s

PCI Express* 2.0 8lanes
i BGBIs

POl Express” 20 8lanes
Graphics 8 GBls

2 Ga/s| oM

0 Intel High

12 Hi-Speed USB 2.0 Ports; MM pal i
Dual EHCI; USB Port Disable NS efinition Audio
Intel* Quiet System

Technology

‘ Z
Bus L EBMI 6 Serial ATA Ports; eSATA;
Sbis Port Disable

Intel” Integrated
10/100/1000 MAC Intel* Matrix
Storage Tedumlngy
Intel® Turbo Memory
with User Pinning

6 PCl Express’ x1

-
@ Net USB Etc.

ptional

Intel* P4S Express Chipset Block Diagram

5 Winter 2013 Memory

Winter 2013 Memory

University of Washington

University of Washington

Hardware: Physical View CPU “Memory”: Registers and Instruction Cache

PCI-Express Slots.

1PCIE X16,2 PCLE X1 Back Panel Connectors
PCI Slots Transparent
(hw controlled)
instruction

Registers caching
Socket 775
Core2 Quad/
SorszExeee Instruction
Ready
Cache Memory
Intel P45
e Program
Lol == - ooR2 controlled
1066+MHz
’I?;ulchasnlml data
me ts
Soral ATA ; e movement
Headers ¥ T EEEB ®
« There are a fixed number of registers in the CPU
« Registers hold data
i RS cgmkiinpon . There is an I-cache in the CPU that holds recently fetched instructions

If you execute a loop that fits in the cache, the CPU goes to memory for

PoRMeaus those instructions only once, then executes it out of its cache

« This slide is just an introduction.
We'll see a fuller explanation later in the course.

Serial Port USB 2.0 Ports
Winter 2013 Memory

PS/2 Keyboard
Port

Memory

Winter 2013

University of Washington

Performance: It's Not Just CPU Speed

m Data and instructions reside in memory

" To execute an instruction, it must be fetched into the CPU

= Next, the data the instruction operates on must be fetched into the CPU
m CPU < Memory bandwidth can limit performance

® Improving performance 1: hardware improvements to increase memory

bandwidth (e.g., DDR - DDR2 - DDR3)
= Improving performance 2: move less data into/out of the CPU
= Put some “memory” in the CPU chip itself (this is “cache” memory)

Winter 2013 Memory 9

University of Washington

Encoding Byte Values

m Binary 00000000, -- 11111111,
= Byte = 8 bits (binary digits) N
. ~\((\’b Q
m Decimal 0,, - 255, & o
m Hexadecimal 00,, - FFy¢ 0 [0] 0000
= Byte = 2 hexadecimal (hex) or base 16 digits % % 88(1)(1)
= Base-16 number representation 31310011
4 |4 | 0100
= Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’ 5 | 5 | 0101
= Write FA1ID37B, in C code as: 61610110
16) 7171|0111
0xFA1D37B or 0xfald37b 8 | 8 [1000
9191|1001
A [10/ 1010
B [11] 1011
C 11211100
D [13] 1101
E |14] 1110
F 1151 1111

Winter 2013 Memory 11

University of Washington

Binary Representations

m Base 2 number representation
= Represent 351,,as 0000000101011111, or 101011111,

m Electronic implementation
® Easy to store with bi-stable elements
= Reliably transmitted on noisy and inaccurate wires

3.3v
2.8V

0.5V
0.0v

Winter 2013 Memory 10

University of Washington

How is memory organized?

m How do we find data in memory?

Winter 2013 Memory 12

University of Washington University of Washington

Byte-Oriented Memory Organization Machine Words
00 .((
00'. <<<<°° m Machine has a “word size”
[TTTTT <« TTTTTT] = Nominal size of integer-valued data

= Including addresses
® Until recently, most machines used 32 bit (4 byte) words
= Limits addresses to 4GB

m Programs refer to addresses

= Conceptually, a very large array of bytes, each with an address (index)
= Became too small for memory-intensive applications

" Most current x86 systems use 64 bit (8 byte) words
= Potential address space: 264 =~ 1.8 X 10'° bytes (18 EB — exabytes)
® Machines support multiple data formats

= QOperating system provides an address space private to each “process”
= Process = program being executed + its data + its “state”
= Program can modify its own data, but not that of others
= Clobbering code or “state” often leads to crashes (or security holes)
m Compiler + run-time system control memory allocation
= Where different program objects should be stored

= Fractions or multiples of word size
= Always a power-of-2 number of bytes: 1, 2, 4, 8, ...

= All allocation within a single address space

Winter 2013 Memory 13 Winter 2013 Memory 14
Word-Oriented Memory Organization Word-Oriented Memory Organization
64-bit 32-bit 64-bit 32-bit
m Addresses specify Words Words Yies Addr. m Addresses specify Words Words CYies Addr.
locations of bytes in memory 0000 locations of bytes in memory 0000
® Address of first byte in word Ad=dr 0001 = Address of first byte in word Adfr 0001
= Addresses of successive words Addr 7 0002 = Addresses of successive words Addr 0000 0002
differ by 4 (32-bit) or 8 (64-bit) | = 8882 differ by 4 (32-bit) or 8 (64-bit) | = 8882
??
= Address of word O, 1, .. 10? Ad:dr 0005 = Address of word 0, 1, .. 10? 9000 Ad:dr 0005
» 0006 0004 0006
0007 0007
0008 0008
Adar 0009 Adar 0009
Addr » 0010 Addr 0008 0010
- 0011 - 0011
”? 0012 0008 0012
Adar 0013 Ador 0013
” 0014 0012 0014
0015 0015

Winter 2013 Memory 15 Winter 2013 Memory 16

University of Washington

Addresses and Pointers

m Address is a location in memory

m Pointer is a data object
that contains an address

m Address 0004

stores the value 351 (or 15F,) 00 00 01 SF 8882
0008
000C
0010
0014
0018
001C
0020
0024

Winter 2013 Memory 17
University of Washington
Addresses and Pointers
m Address is a location in memory
m Pointer is a data object
that contains an address
m Address 0004 0000
stores the value 351 (or 15F,) 00 00 01 5F| 0004
m Pointer to address 0004 0008
stored at address 001C 000C
. . 0010
m Pointer to a pointer 0014
in 0024 0018
00 00 00 04] oo01cC
< 0020
00:00 00 1C| 0024

Winter 2013 Memory

19

Addresses and Pointers

m Address is a location in memory

m Pointer is a data object
that contains an address

m Address 0004

University of Washington

stores the value 351 (or 15F ;) 00 00 Ol SF 8882
m Pointer to address 0004 0008
stored at address 001C 000C
0010
0014
0018
00 00 00 04| o01C
0020
0024
Winter 2013 Memory 18
University of Washington
Addresses and Pointers
m Address is a location in memory
m Pointer is a data object
that contains an address
m Address 0004 0000
stores the value 351 (or 15F¢) 00 00 01 SF| 0004
m Pointer to address 0004 0008
stored at address 001C 000C
. . 0010
m Pointer to a pointer 00 00 00 ocl 0014
in 0024 0018
= Address 0014 00 00 00 04f 001C
stores the value 12 (00 00 00 1iC 8852

" |sita pointer?

Winter 2013 Memory

20

University of Washington

Data Representations

m Sizes of objects (in bytes)

" Java data type C data type Typical 32-bit x86-64
= boolean bool 1 1
= byte char 1 1
= char 2 2
= short shortint 2 2
= int int 4 4
= float float 4 4
. long int 4 8
= double double 8 8
= long long long 8 8
. long double 8 16
= (reference) [pointer* 4 8]
Winter 2013 Memory 21

University of Washington

Byte Ordering Example

m Big endian (PowerPC, Sun, Internet)

® Big end first: most-significant byte has lowest address
m Little endian (x86)

= Little end first: least-significant byte has lowest address
m Example

= Variable has 4-byte representation 0x01234567

= Address of variable is 0x100

0x100 0x101 0x102 0x103

BigEndian___ [[o01[23Ja5]67] [|

0x100 0x101 0x102 0x103

Little Endian | [[67T45 23T 01] [|

Winter 2013 Memory 23

University of Washington

Byte Ordering

m How should bytes within multi-byte word be ordered in
memory?

m Say you want to store the 4-byte word Oxaabbccdd
= What order will the bytes be stored?

m Endianness: big endian vs. little endian
= Two different conventions, used by different architectures
= Origin: Gulliver’s Travels (see textbook, section 2.1)

Winter 2013 Memory 22

University of Washington

Representing Integers

m int A = 12345; Decimal: 12345

m int B = -12345; Binary: 0011 0000 0011 1001
m long int C = 12345;

Hex: 3 0 3 9 ->0x00003039
1A32, x86-64 A Sun A
1A32C X86-64 C Sun C
low addr | 39 00
30 00 39 39 00
00 30 30 30 00
high addr |_00 39 00 00 30
00 00 39
1A32, x86-64 B Sun B 00
c7 FF 00
CF FF 00
FF CF 00
FF c7 \ Two’s complement representation

for negative integers (next lecture)

Winter 2013 Memory 24

University of Washington University of Washington

Reading Byte-Reversed Listings Addresses and Pointers in C
& = ‘address of value’
m Disassembly m Pointer declarations use * * = value at address’
= Text representation of binary machine code = int *ptr; intx,y; ptr=_&x; or ‘dereference’
= Generated by program that reads the machine code = Declares a variable ptr that is a pointer to a data item that is an integer
m Example instruction in memory = Declares integer values named x and y
= add value Ox12ab to register ‘ebx’ (a special location in CPU’s memory) " Assigns ptr to point to the address where x is stored

Address Instruction Code Assembly Rendition m To use the value pointed to by a pointer we use dereference

L = . =% i =
8048366: 81c3ab 12 00 00 add $0x12ab,%ebx ptr =& theny = ¥ptr + 1is the same asy =x + 1
a " |f ptr=&y:theny=*ptr+ listhesameasy=y+1
® *ptris the value stored at the location to which the pointer ptr is pointing
Deciphering numbers " Whatis *(&x) equivalent to?
= Value: 0x12ab m We can do arithmetic on pointers
= Pad to 32 bits: 0x000012ab = ptr=ptr+1; //really adds 4: type of ptris int*, and an int uses 4 bytes!
= Split into bytes: 0000 12 ab = Changes the value of the pointer so that it now points to the next data
= Reverse (little-endian): ab 12 00 00 item in memory (that may be y, or it may not — this is dangerous!)
Winter 2013 Memory 25 Winter 2013 Memory 26
Assignment in C Assignment in C
m Left-hand-side = right-hand-side m Left-hand-side = right-hand-side
® LHS must evaluate to a memory location (a variable) ® |HS must evaluate to a memory location (a variable)
® RHS must evaluate to a value (could be an address!) ® RHS must evaluate to a value (could be an address!)
m E.g., x at location 0x04, y at 0x18 m E.g., x at location 0x04, y at 0x18
= x originally 0x0, y originally 0x3CD02700 0000 = x originally 0x0, y originally 0x3CD02700 0000
00 00 (00 00 0004 " intx,y; 00 00 00 00| 0004
0008 o o 0008
000C x =y +3; //get value aty, add 3, put it in x 000C
0010 0010
0014 0014
00 27 DO 3C| 0018 00 .27 DO 3C| 0018
001C 001C
0020 0020
0024 0024

Winter 2013 Memory 27 Winter 2013 Memory 28

University of Washington University of Washington

Assignment in C Assignment in C
m Left-hand-side = right-hand-side m Left-hand-side = right-hand-side
® LHS must evaluate to a memory location (a variable) ® | HS must evaluate to a memory location (a variable)
® RHS must evaluate to a value (could be an address!) ® RHS must evaluate to a value (could be an address!)
m E.g., x at location 0x04, y at 0x18 m E.g., x at location 0x04, y at 0x18
= x originally 0x0, y originally 0x3CD02700 0000 = x originally 0x0, y originally 0x3CD02700 0000
. . 03 27 DO 3C| 0004 s 00 00 00 00| 0004
" intxvy; 0008 " int *x; inty; 0008
x =y +3; //get value aty, add 3, put it in x 000C x =&y +3; // get address of y, add ?? 000C
0010 0010
0014 0014
00 27 DO 3C| 0018 00 27 DO 3C| 0018
001C 001C
0020 0020
0024 0024
Winter 2013 Memory 29 Winter 2013 Memory 30
Assignment in C Assignment in C
m Left-hand-side = right-hand-side m Left-hand-side = right-hand-side
® LHS must evaluate to a memory location (a variable) ® |HS must evaluate to a memory location (a variable)
® RHS must evaluate to a value (could be an address!) ® RHS must evaluate to a value (could be an address!)
m E.g., x at location 0x04, y at 0x18 m E.g., x at location 0x04, y at 0x18
= x originally 0x0, y originally 0x3CD02700 0000 = x originally 0x0, y originally 0x3CD02700 0000
ol 24 00 00 00 0004 el 24 00 00 00| 0004
" int *x; inty; 0008 " int *x; inty; 0008
x = &y + 3; // get address of y, add 12 000C x = &y + 3; // get address of y, add 12 000C
// 0x0018 + 0x000C = 0x0024 0010 // 0x0018 + 0x000C = 0x0024 0010
0014 *x = y; // value of y copied to 0014
00 27 DO 3C| 0018 ’// location to which x points 00 27 DO 3C| 0018
001C P 001C
0020 0020
0024 0024

Winter 2013 Memory 31 Winter 2013 Memory 32

University of Washington

Assignment in C

m Left-hand-side = right-hand-side
® LHS must evaluate to a memory location (a variable)

® RHS must evaluate to a value (could be an address!)

m E.g., x at location 0x04, y at 0x18

= x originally 0x0, y originally 0x3CD02700 0000
e 24 00 00 00 0004
" int *x; inty; 0008
x = &y + 3; // get address of y, add 12 000C
// 0x0018 + 0x000C = 0x0024 0010
0014

Ky = yge i
=y //// I\;T:goc:(!ocv?lﬁlii?\ iopoints 00 27 DO 3C4 0018
001C
0020
0027 DO :3C| 0024

Winter 2013 Memory 33

Representing strings
m A C-style string is represented by an array of bytes.

® Elements are one-byte ASCII codes for each character.
® A0 byte marks the end of the array.

32 space | | 48 0 64 @| |80 P 96) 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q
34 7 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 929 c 115 s
36 S 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 u 101 e 117 u
38 & 54 6 70 F 86 \% 102 f 118 \
39 ! 55 7 71 G 87 w 103 g 119 w
40 (56 8 72 H 88 X 104 h 120 X
41) 57 9 73 | 89 Y 105 | 121 y
42 * 58 : 74 J 90 z 106 j 122 z
43 + 59 75 K| |91 [107 k 123 {
44 B 60 < 76 L 92 \ 108 L 124 |
45 - 61 = 77 M| |93 1 109 m 125 3}
46 . 62 > 78 N 94 ~ 110 n 126 ~
47 / 63 ? 79 [o] 95 _ 111 o 127 del

Winter 2013 Memory 35

University of Washington

Arrays

m Arrays represent adjacent locations in memory storing the
same type of data object
" e.g., int big_array[128];
allocates 512 adjacent bytes in memory starting at 0x00ff0000
m Pointer arithmetic can be used for array indexing in C (if
pointer and array have the same type!):

® int *array_ptr;

array_ptr = big_array; 0x00ff0000

array_ptr = &big_array|[0]; 0x00ff0000

array_ptr = &big_array[3]; 0x00ff000c

array_ptr = &big_array[0] + 3; 0x00ffO00C (adds 3 * size of int)
array_ptr = big_array + 3; 0x00ffO00C (adds 3 * size of int)
*array_ptr = *array_ptr +1; 0x00ffO00C (but big_array[3] is incremented)
array_ptr = &big_array[130]; 0x00ff0208 (out of bounds, € doesn’t check)

= |n general: &big_arrayl[i] is the same as (big_array + i),
which implicitly computes: &bigarray[0] + i*sizeof(bigarray[0]);

Winter 2013 Memory 34

University of Washington

Null-terminated strings

m For example, “Harry Potter” can be stored as a 13-byte array.

[72| o7 [11a] 11a] 121] 32| 8o [111] 116] 116] 101 [114] o |
H a r r y P o t t e r \0

= Why do we put a 0, or null zero, at the end of the string?
® Note the special symbol: string[12] = '\0';

How do we compute the string length?

Winter 2013 Memory 36

Compatibility
char S[6] = "12345";

1A32, x86-64 S SunS

31 31
32 32
33 33
34 34
35 35
00 00

m Byte ordering (endianness) is not an issue for standard C
strings (char arrays)

m Unicode characters — up to 4 bytes/character

= ASCII codes still work (just add leading 0 bits) but can support the many
characters in all languages in the world

= Java and C have libraries for Unicode (Java commonly uses 2 bytes/char)

Winter 2013

Memory 37

University of Washington

show_bytes Execution Example

int a = 12345; // represented as 0x00003039
printf ("int a = 12345;\n");

show_int (@) ; // show bytes((byte *) &a, sizeof(int));

Result (Linux on attu):

int a = 12345;

0x7£££6£330dcc 0x39
0x7£££f6£330dcd 0x30
0x7£££f6£330dce 0x00
0x7£££f6£330dcf 0x00

Winter 2013 ™

emory 39

University of Washington

Examining Data Representations

m Code to print byte representation of data
= Any data type can be treated as a byte array by casting it to char

typedef char byte; //size of char == 1 byte

void show_bytes (byte *start, int len) {
int i;
for (1 = 0; i < len; i++)
printf ("%p\t0x%.2x\n", start+i, *(start+i));
printf ("\n");

}
printf directives:
void show_int (int x) { %p Print pointer
show_bytes((byte *) &x, sizeof(int)); \t Tab
L %x Print value as hex

\n New line

Winter 2013 Memory 38

University of Washington

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as 0
= AND: A&B=1whenbothAislandBis1
= OR:A|B=1wheneitherAislorBis1
= XOR: A"B =1 when either Ais 1 or Bis 1, but not both
= NOT: ~A =1 when Ais 0 and vice-versa
= DeMorgan’s Law: ~(A | B)=~A &~B

&|o 1 1|0 1 Ao 1 ~|
o‘oo 0}01 0‘01 0‘1
110 1 101 1 1 0 1]0

Winter 2013 Memory

i 40

University of Washington

Manipulating Bits

m Boolean operators can be applied to bit vectors: operations
are applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 ~ 01010101
01000001 01111101 00111100 10101010
Winter 2013 Memory 41

University of Washington

Contrast: Logic Operations in C

m Logical operatorsinC: &&, ||, !
= Behavior:
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor 1
= Early termination (&&and | |)

m Examples (char data type)

= 10x41 --> 0x00
= 10x00 --> 0x01
" 0x69 && 0x55 --> 0x01

= 0x00 && 0x55 --> 0x00

= 0x69 || 0x55 =--> 0x01

" p §&& *ptt (avoids null pointer access: null pointer = 0x00000000)
shortfor: if (p) { *p++; }

Winter 2013 Memory 43

University of Washington

Bit-Level Operations in C

= Bitwise operators &, |, A, ~ are availablein C
= Apply to any “integral” data type
= long, int, short, char
= Arguments are treated as bit vectors
= Operations applied bitwise
m Examples (char data type)
" ~0x41 --> OxBE
~01000001, --> 10111110,
" ~0x00 --> OxFF
~00000000, --> 11111111,
" 0x69 & 0x55 --> O0x41
01101001, & 01010101, --> 01000001,
" 0x69 | 0x55 --> 0x7D
01101001, | 01010101, --> 01111101,

Winter 2013 Memory 42

University of Washington

Representing & Manipulating Sets

m Bit vectors can be used to represent sets
= Width w bit vector represents subsets of {0, ..., w—1}
" a;=1ifj €A — each bit in the vector represents the absence (0) or
presence (1) of an element in the set

01101001 {0,3,5,6}
76543210
01010101 {0,2,4,6}
16543210

m Operations
" & Intersection 01000001 {0,6}
* | Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}
= ~ Complement 10101010 {1,3,5,7}

Winter 2013 Memory 44

