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Announcements

Lab 0 is due Friday (no late days)

Section 1 tomorrow
= |f possible, bring your laptop

The Hardware/Software Interface

CSE351 Winter 2013 Visit the website and use:

® The link to the CSE home VM
® The speedometer

. = The anonymous feedback link
Memory, Data & Addressing

® The discussion board!
Visit office hours

Course Speed
(click to vote)

Lab 1 posted today, due next Friday
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Data & addressing
Roadmap Integgrs&ﬂoats Today's Topics
C: Java: Machine code & C

car *c = malloc(sizeof (car)) ;
c->miles = 100;
c->gals = 17;

Car c = new Car();
c.setMiles (100) ;
c.setGals (17) ;

x86 assembly
programming
Procedures &
stacks

Representing information as bits and bytes
Organizing and addressing data in memory

float mpg = get mpg(c) ; float mpg = . . . .
free(c) ; c.getMPG() ; /'\\nrrays & ;truct; Manipulating data in memory using C
~ — emory & caches B . . .
oolean algebra and bit-level manipulations
Assembly | get_mpg: Processes 4 p
language: EEEAE ST Virtual memory
movq Gy, s Memory allocation
popq $rbp Javavs. C
ret
1 :
& 0S
Machine 0111010000011000 1 f
de: 100011010000010000000010
code: 1000100111000010 | § .
110000011111101000011111 Windows 8 Mac S
Il
v Vv
Computer
system:
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Hardware: Logical View Hardware: Semi-Logical View

Intel* Core™2 Duo Processor
Intel* Core™2 Qun Processor
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Technology

‘ Z
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Sbis Port Disable

Intel” Integrated
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Hardware: Physical View CPU “Memory”: Registers and Instruction Cache

PCI-Express Slots.

1PCIE X16,2 PCLE X1 Back Panel Connectors
PCI Slots Transparent
(hw controlled)
instruction

Registers caching
Socket 775
Core2 Quad/
SorszExeee Instruction
Ready
Cache Memory
Intel P45
e Program
Lol == - ooR2 controlled
1066+MHz
’I?;ulchasnlml data
me ts
Soral ATA ; e movement
Headers ¥ T EEEB ®
« There are a fixed number of registers in the CPU
« Registers hold data
i RS cgmkiinpon . There is an I-cache in the CPU that holds recently fetched instructions

If you execute a loop that fits in the cache, the CPU goes to memory for

PoRMeaus those instructions only once, then executes it out of its cache

« This slide is just an introduction.
We'll see a fuller explanation later in the course.

Serial Port USB 2.0 Ports
Winter 2013 Memory

PS/2 Keyboard
Port

Memory
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Performance: It's Not Just CPU Speed

m Data and instructions reside in memory

" To execute an instruction, it must be fetched into the CPU

= Next, the data the instruction operates on must be fetched into the CPU
m CPU < Memory bandwidth can limit performance

® Improving performance 1: hardware improvements to increase memory

bandwidth (e.g., DDR - DDR2 - DDR3)
= Improving performance 2: move less data into/out of the CPU
= Put some “memory” in the CPU chip itself (this is “cache” memory)
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Encoding Byte Values

m Binary 00000000, -- 11111111,
= Byte = 8 bits (binary digits) N
. ~\((\’b Q
m Decimal 0,, - 255, & o
m Hexadecimal 00,, - FFy¢ 0 [ 0] 0000
= Byte = 2 hexadecimal (hex) or base 16 digits % % 88(1)(1)
= Base-16 number representation 31310011
4 |4 | 0100
= Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’ 5 | 5 | 0101
= Write FA1ID37B, in C code as: 61610110
16 ) 7171|0111
0xFA1D37B or 0xfald37b 8 | 8 [ 1000
9191|1001
A [10/ 1010
B [11] 1011
C 11211100
D [13] 1101
E |14] 1110
F 1151 1111
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Binary Representations

m Base 2 number representation
= Represent 351,,as 0000000101011111, or 101011111,

m Electronic implementation
® Easy to store with bi-stable elements
= Reliably transmitted on noisy and inaccurate wires

3.3v
2.8V

0.5V
0.0v
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How is memory organized?

m How do we find data in memory?

Winter 2013 Memory 12
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Byte-Oriented Memory Organization Machine Words
00 .((
00'. <<<<°° m Machine has a “word size”
[TTTTT <« TTTTTT] = Nominal size of integer-valued data

= Including addresses
® Until recently, most machines used 32 bit (4 byte) words
= Limits addresses to 4GB

m Programs refer to addresses

= Conceptually, a very large array of bytes, each with an address (index)
= Became too small for memory-intensive applications

" Most current x86 systems use 64 bit (8 byte) words
= Potential address space: 264 =~ 1.8 X 10'° bytes (18 EB — exabytes)
® Machines support multiple data formats

= QOperating system provides an address space private to each “process”
= Process = program being executed + its data + its “state”
= Program can modify its own data, but not that of others
= Clobbering code or “state” often leads to crashes (or security holes)
m Compiler + run-time system control memory allocation
= Where different program objects should be stored

= Fractions or multiples of word size
= Always a power-of-2 number of bytes: 1, 2, 4, 8, ...

= All allocation within a single address space

Winter 2013 Memory 13 Winter 2013 Memory 14
Word-Oriented Memory Organization Word-Oriented Memory Organization
64-bit 32-bit 64-bit 32-bit
m Addresses specify Words  Words  Yies Addr. m Addresses specify Words  Words  CYies Addr.
locations of bytes in memory 0000 locations of bytes in memory 0000
® Address of first byte in word Ad=dr 0001 = Address of first byte in word Adfr 0001
= Addresses of successive words Addr 7 0002 = Addresses of successive words Addr 0000 0002
differ by 4 (32-bit) or 8 (64-bit) | = 8882 differ by 4 (32-bit) or 8 (64-bit) | = 8882
??
= Address of word O, 1, .. 10? Ad:dr 0005 = Address of word 0, 1, .. 10? 9000 Ad:dr 0005
» 0006 0004 0006
0007 0007
0008 0008
Adar 0009 Adar 0009
Addr » 0010 Addr 0008 0010
- 0011 - 0011
”? 0012 0008 0012
Adar 0013 Ador 0013
” 0014 0012 0014
0015 0015

Winter 2013 Memory 15 Winter 2013 Memory 16
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Addresses and Pointers

m Address is a location in memory

m Pointer is a data object
that contains an address

m Address 0004

stores the value 351 (or 15F,) 00 00 01 SF 8882
0008
000C
0010
0014
0018
001C
0020
0024

Winter 2013 Memory 17
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Addresses and Pointers
m Address is a location in memory
m Pointer is a data object
that contains an address
m Address 0004 0000
stores the value 351 (or 15F,) 00 00 01 5F| 0004
m Pointer to address 0004 0008
stored at address 001C 000C
. . 0010
m Pointer to a pointer 0014
in 0024 0018
00 00 00 04] oo01cC
< 0020
00:00 00 1C| 0024

Winter 2013 Memory
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Addresses and Pointers

m Address is a location in memory

m Pointer is a data object
that contains an address

m Address 0004

University of Washington

stores the value 351 (or 15F ;) 00 00 Ol SF 8882
m Pointer to address 0004 0008
stored at address 001C 000C
0010
0014
0018
00 00 00 04| o01C
0020
0024
Winter 2013 Memory 18
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Addresses and Pointers
m Address is a location in memory
m Pointer is a data object
that contains an address
m Address 0004 0000
stores the value 351 (or 15F¢) 00 00 01 SF| 0004
m Pointer to address 0004 0008
stored at address 001C 000C
. . 0010
m Pointer to a pointer 00 00 00 ocl 0014
in 0024 0018
= Address 0014 00 00 00 04f 001C
stores the value 12 ( 00 00 00 1iC 8852

" |sita pointer?

Winter 2013 Memory
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Data Representations

m Sizes of objects (in bytes)

" Java data type C data type Typical 32-bit x86-64
= boolean bool 1 1
= byte char 1 1
= char 2 2
= short shortint 2 2
= int int 4 4
= float float 4 4
. long int 4 8
= double double 8 8
= long long long 8 8
. long double 8 16
= (reference) [pointer* 4 8]
Winter 2013 Memory 21
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Byte Ordering Example

m Big endian (PowerPC, Sun, Internet)

® Big end first: most-significant byte has lowest address
m Little endian (x86)

= Little end first: least-significant byte has lowest address
m Example

= Variable has 4-byte representation 0x01234567

= Address of variable is 0x100

0x100 0x101 0x102 0x103

BigEndian___ [ [o01[23Ja5]67] [ |

0x100 0x101 0x102 0x103

Little Endian | [ [67T45 23T 01] [ |
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Byte Ordering

m How should bytes within multi-byte word be ordered in
memory?

m Say you want to store the 4-byte word Oxaabbccdd
= What order will the bytes be stored?

m Endianness: big endian vs. little endian
= Two different conventions, used by different architectures
= Origin: Gulliver’s Travels (see textbook, section 2.1)

Winter 2013 Memory 22
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Representing Integers

m int A = 12345; Decimal: 12345

m int B = -12345; Binary: 0011 0000 0011 1001
m long int C = 12345;

Hex: 3 0 3 9 ->0x00003039
1A32, x86-64 A Sun A
1A32C X86-64 C Sun C
low addr | 39 00
30 00 39 39 00
00 30 30 30 00
high addr |_00 39 00 00 30
00 00 39
1A32, x86-64 B Sun B 00
c7 FF 00
CF FF 00
FF CF 00
FF c7 \ Two’s complement representation

for negative integers (next lecture)

Winter 2013 Memory 24
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Reading Byte-Reversed Listings Addresses and Pointers in C
& = ‘address of value’
m Disassembly m Pointer declarations use * * = value at address’
= Text representation of binary machine code = int *ptr; intx,y; ptr=_&x; or ‘dereference’
= Generated by program that reads the machine code = Declares a variable ptr that is a pointer to a data item that is an integer
m Example instruction in memory = Declares integer values named x and y
= add value Ox12ab to register ‘ebx’ (a special location in CPU’s memory) " Assigns ptr to point to the address where x is stored

Address Instruction Code Assembly Rendition m To use the value pointed to by a pointer we use dereference

L = . =% i =
8048366:  81c3ab 12 00 00 add  $0x12ab,%ebx ptr =& theny = ¥ptr + 1is the same asy =x + 1
a " |f ptr=&y:theny=*ptr+ listhesameasy=y+1
® *ptris the value stored at the location to which the pointer ptr is pointing
Deciphering numbers " Whatis *(&x) equivalent to?
= Value: 0x12ab m We can do arithmetic on pointers
= Pad to 32 bits: 0x000012ab = ptr=ptr+1; //really adds 4: type of ptris int*, and an int uses 4 bytes!
= Split into bytes: 0000 12 ab = Changes the value of the pointer so that it now points to the next data
= Reverse (little-endian): ab 12 00 00 item in memory (that may be y, or it may not — this is dangerous!)
Winter 2013 Memory 25 Winter 2013 Memory 26
Assignment in C Assignment in C
m Left-hand-side = right-hand-side m Left-hand-side = right-hand-side
® LHS must evaluate to a memory location (a variable) ® |HS must evaluate to a memory location (a variable)
® RHS must evaluate to a value (could be an address!) ® RHS must evaluate to a value (could be an address!)
m E.g., x at location 0x04, y at 0x18 m E.g., x at location 0x04, y at 0x18
= x originally 0x0, y originally 0x3CD02700 0000 = x originally 0x0, y originally 0x3CD02700 0000
00 00 (00 00 0004 " intx,y; 00 00 00 00| 0004
0008 o o 0008
000C x =y +3; //get value aty, add 3, put it in x 000C
0010 0010
0014 0014
00 27 DO 3C| 0018 00 .27 DO 3C| 0018
001C 001C
0020 0020
0024 0024

Winter 2013 Memory 27 Winter 2013 Memory 28
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Assignment in C Assignment in C
m Left-hand-side = right-hand-side m Left-hand-side = right-hand-side
® LHS must evaluate to a memory location (a variable) ® | HS must evaluate to a memory location (a variable)
® RHS must evaluate to a value (could be an address!) ® RHS must evaluate to a value (could be an address!)
m E.g., x at location 0x04, y at 0x18 m E.g., x at location 0x04, y at 0x18
= x originally 0x0, y originally 0x3CD02700 0000 = x originally 0x0, y originally 0x3CD02700 0000
. . 03 27 DO 3C| 0004 s 00 00 00 00| 0004
" intxvy; 0008 " int *x; inty; 0008
x =y +3; //get value aty, add 3, put it in x 000C x =&y +3; // get address of y, add ?? 000C
0010 0010
0014 0014
00 27 DO 3C| 0018 00 27 DO 3C| 0018
001C 001C
0020 0020
0024 0024
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Assignment in C Assignment in C
m Left-hand-side = right-hand-side m Left-hand-side = right-hand-side
® LHS must evaluate to a memory location (a variable) ® |HS must evaluate to a memory location (a variable)
® RHS must evaluate to a value (could be an address!) ® RHS must evaluate to a value (could be an address!)
m E.g., x at location 0x04, y at 0x18 m E.g., x at location 0x04, y at 0x18
= x originally 0x0, y originally 0x3CD02700 0000 = x originally 0x0, y originally 0x3CD02700 0000
ol 24 00 00 00 0004 el 24 00 00 00| 0004
" int *x; inty; 0008 " int *x; inty; 0008
x = &y + 3; // get address of y, add 12 000C x = &y + 3; // get address of y, add 12 000C
// 0x0018 + 0x000C = 0x0024 0010 // 0x0018 + 0x000C = 0x0024 0010
0014 *x = y; // value of y copied to 0014
00 27 DO 3C| 0018 ’// location to which x points 00 27 DO 3C| 0018
001C P 001C
0020 0020
0024 0024
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Assignment in C

m Left-hand-side = right-hand-side
® LHS must evaluate to a memory location (a variable)

® RHS must evaluate to a value (could be an address!)

m E.g., x at location 0x04, y at 0x18

= x originally 0x0, y originally 0x3CD02700 0000
e 24 00 00 00 0004
" int *x; inty; 0008
x = &y + 3; // get address of y, add 12 000C
// 0x0018 + 0x000C = 0x0024 0010
0014

Ky = yge i
=y //// I\;T:goc:(!ocv?lﬁlii?\ iopoints 00 27 DO 3C4 0018
001C
0020
0027 DO :3C| 0024

Winter 2013 Memory 33

Representing strings
m A C-style string is represented by an array of bytes.

® Elements are one-byte ASCII codes for each character.
® A0 byte marks the end of the array.

32 space | | 48 0 64 @| |80 P 96 ) 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q
34 7 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 929 c 115 s
36 S 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 u 101 e 117 u
38 & 54 6 70 F 86 \% 102 f 118 \
39 ! 55 7 71 G 87 w 103 g 119 w
40 ( 56 8 72 H 88 X 104 h 120 X
41 ) 57 9 73 | 89 Y 105 | 121 y
42 * 58 : 74 J 90 z 106 j 122 z
43 + 59 75 K| |91 [ 107 k 123 {
44 B 60 < 76 L 92 \ 108 L 124 |
45 - 61 = 77 M| |93 1 109 m 125 3}
46 . 62 > 78 N 94 ~ 110 n 126 ~
47 / 63 ? 79 [o] 95 _ 111 o 127 del

Winter 2013 Memory 35
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Arrays

m Arrays represent adjacent locations in memory storing the
same type of data object
" e.g., int big_array[128];
allocates 512 adjacent bytes in memory starting at 0x00ff0000
m Pointer arithmetic can be used for array indexing in C (if
pointer and array have the same type!):

® int *array_ptr;

array_ptr = big_array; 0x00ff0000

array_ptr = &big_array|[0]; 0x00ff0000

array_ptr = &big_array[3]; 0x00ff000c

array_ptr = &big_array[0] + 3; 0x00ffO00C (adds 3 * size of int)
array_ptr = big_array + 3; 0x00ffO00C (adds 3 * size of int)
*array_ptr = *array_ptr +1; 0x00ffO00C (but big_array[3] is incremented)
array_ptr = &big_array[130]; 0x00ff0208 (out of bounds, € doesn’t check)

= |n general: &big_arrayl[i] is the same as (big_array + i),
which implicitly computes: &bigarray[0] + i*sizeof(bigarray[0]);

Winter 2013 Memory 34
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Null-terminated strings

m For example, “Harry Potter” can be stored as a 13-byte array.

[ 72| o7 [11a] 11a] 121] 32| 8o [ 111 ] 116] 116 ] 101 [ 114] o |
H a r r y P o t t e r \0

= Why do we put a 0, or null zero, at the end of the string?
® Note the special symbol: string[12] = '\0';

How do we compute the string length?

Winter 2013 Memory 36



Compatibility
char S[6] = "12345";

1A32, x86-64 S SunS

31 31
32 32
33 33
34 34
35 35
00 00

m Byte ordering (endianness) is not an issue for standard C
strings (char arrays)

m Unicode characters — up to 4 bytes/character

= ASCII codes still work (just add leading 0 bits) but can support the many
characters in all languages in the world

= Java and C have libraries for Unicode (Java commonly uses 2 bytes/char)

Winter 2013
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show_bytes Execution Example

int a = 12345; // represented as 0x00003039
printf ("int a = 12345;\n");

show_int (@) ;  // show bytes( (byte *) &a, sizeof(int));

Result (Linux on attu):

int a = 12345;

0x7£££6£330dcc 0x39
0x7£££f6£330dcd 0x30
0x7£££f6£330dce 0x00
0x7£££f6£330dcf 0x00

Winter 2013 ™
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Examining Data Representations

m Code to print byte representation of data
= Any data type can be treated as a byte array by casting it to char

typedef char byte; //size of char == 1 byte

void show_bytes (byte *start, int len) {
int i;
for (1 = 0; i < len; i++)
printf ("%p\t0x%.2x\n", start+i, *(start+i));
printf ("\n");

}
printf directives:
void show_int (int x) { %p  Print pointer
show_bytes( (byte *) &x, sizeof(int)); \t Tab
L %x  Print value as hex

\n New line

Winter 2013 Memory 38
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Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as 0
= AND: A&B=1whenbothAislandBis1
= OR:A|B=1wheneitherAislorBis1
= XOR: A"B =1 when either Ais 1 or Bis 1, but not both
= NOT: ~A =1 when Ais 0 and vice-versa
= DeMorgan’s Law: ~(A | B)=~A &~B

&|o 1 1|0 1 Ao 1 ~|
o‘oo 0}01 0‘01 0‘1
110 1 101 1 1 0 1]0

Winter 2013 Memory
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Manipulating Bits

m Boolean operators can be applied to bit vectors: operations
are applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 ~ 01010101
01000001 01111101 00111100 10101010
Winter 2013 Memory 41
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Contrast: Logic Operations in C

m Logical operatorsinC: &&, ||, !
= Behavior:
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor 1
= Early termination (&&and | |)

m Examples (char data type)

= 10x41 -->  0x00
= 10x00 --> 0x01
" 0x69 && 0x55 --> 0x01

= 0x00 && 0x55 --> 0x00

= 0x69 || 0x55 =--> 0x01

" p §&& *ptt (avoids null pointer access: null pointer = 0x00000000)
shortfor: if (p) { *p++; }

Winter 2013 Memory 43
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Bit-Level Operations in C

= Bitwise operators &, |, A, ~ are availablein C
= Apply to any “integral” data type
= long, int, short, char
= Arguments are treated as bit vectors
= Operations applied bitwise
m Examples (char data type)
" ~0x41 --> OxBE
~01000001, --> 10111110,
" ~0x00 --> OxFF
~00000000, --> 11111111,
" 0x69 & 0x55 --> O0x41
01101001, & 01010101, --> 01000001,
" 0x69 | 0x55 --> 0x7D
01101001, | 01010101, --> 01111101,
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Representing & Manipulating Sets

m Bit vectors can be used to represent sets
= Width w bit vector represents subsets of {0, ..., w—1}
" a;=1ifj €A — each bit in the vector represents the absence (0) or
presence (1) of an element in the set

01101001 {0,3,5,6}
76543210
01010101 {0,2,4,6}
16543210

m Operations
" & Intersection 01000001 {0,6}
* | Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}
= ~  Complement 10101010 {1,3,5,7}
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