University of Washington

University of Washington

Who is your instructor?

m History:
= Undergrad at University of Pennsylvania

The Hardware/Software Interface * Software engineer at Cisco
CSE351 Winter 2013 ® Grad student at UW

m My research: "I"'l"
Instructor: = Operating systems C I S C o
Peter Hornyack = Computer architecture

= Security / privacy
Teaching Assistants:
Elliott Brossard, Matthew Dorsett, Dustin Lundquist, Mark Wyse m First-time instructor

= | am not a doctor, nor a professor

Winter 2013 Introduction 1 Winter 2013 Introduction 2

Who are your TAs? Notice

m This lecture is being recorded!

® The microphone and projector are captured and will be combined into
a screencast

= Recordings are only accessible to students enrolled in the class after
logging in with UW ID
= Audio recordings can be downloaded

Elliott Matt
(AC) (AB)

= |f any of this concerns you, see these links and come speak to me:
= http://www.css.washington.edu/pdf/Screencastinfo.pdf

= http://www.css.washington.edu/wiki/
Frequently_Asked_Questions_about On-Demand_Audio_Service

m Information about how to view the recordings will be posted
to website

Winter 2013 Introduction 3 Winter 2013 Introduction 4

University of Washington University of Washington

Who are you? The Hardware/Software Interface

m 85 students
= We'll do our best to get to know each of you!

m What is hardware? Software?

= What is an interface?
m Who has written a program in:

= Java?
= C?
= Assembly language?

= Why do we need a hardware/software interface?

= Why do we need to understand both sides of this interface?

Winter 2013 Introduction Winter 2013 Introduction 6

University of Washington University of Washington

C/Java, assembly, and machine code

\if (x !=0) y = (y+2)/x; ‘

C/Java, assembly, and machine code

\if (x !=0) y = (y+2)/x; ‘

v

cmpl $0, -4(%ebp) 1000001101111100001001000001110000000000 cmpl $0, -4(%ebp) 1000001101111100001001000001110000000000
je L2 0111010000011000 je L2 0111010000011000
movl -12(%ebp), %eax 10001011010001000010010000010100 movl -12(%ebp), %eax 10001011010001000010010000010100
movl -8(%ebp), %edx 10001011010001100010010100010100 movl -8(%ebp), %edx 10001011010001100010010100010100
leal (%edx, %eax), %eax 100011010000010000000010 leal (%edx, %eax), %eax 100011010000010000000010
movl %eax, %edx 1000100111000010 movl %eax, %edx 1000100111000010
sarl $31, %edx 110000011111101000011111 sarl $31, %edx 110000011111101000011111
idivl -4(%ebp) 11110111011111000010010000011100 idivl -4(%ebp) 11110111011111000010010000011100
movl %eax, -8(%ebp) 10001001010001000010010000011000 movl %eax, -8(%ebp) 10001001010001000010010000011000
L2: L2:

o The three program fragments are equivalent
o You'd rather write C! - a more human-friendly language

o The hardware likes bit strings! - everything is voltages

« The machine instructions are actually much shorter than the number of
bits we would need to represent the characters in the assembly language

Winter 2013 Introduction 7 Winter 2013 Introduction 8

University of Washington

HW/SW Interface: The Historical Perspective

m Hardware started out quite primitive

= Hardware designs were expensive = instructions had to be very simple
—e.g., a single instruction for adding two integers

m Software was also very basic
= Software primitives reflected the hardware pretty closely

v Architecture Specification (Interface)

©
\

Hardware

Winter 2013 Introduction 9

University of Washington

HW/SW Interface: Higher-Level Languages

m Higher level of abstraction:

= 1 line of a high-level language is compiled into many (sometimes very
many) lines of assembly language

C language specification

g User
program Hardware,
\ inC compiler

Winter 2013 Introduction u

HW/SW Interface: Assemblers

m Life was made a lot better by assemblers
= 1 assembly instruction = 1 machine instruction, but...

= different syntax: assembly instructions are character strings, not bit
strings, a lot easier to read/write by humans

® can use symbolic names
Assembler specification

g User
prosram Assembler Hardware
\ asm

Winter 2013 Introduction 10

University of Washington

HW/SW Interface: Code / Compile / Run Times

Code Time Compile Time Run Time

User

program

\ inC compiler

c

Assembler Hardware

.c file .exe file

Note: The compiler and assembler are just programs, developed using
this same process.

Winter 2013 Introduction 12

Outline for today

Course themes: big and little

Roadmap of course topics

How the course fits into the CSE curriculum

Logistics

Winter 2013

Roadmap
C:

|
|
m Three important realities
|
|

Introduction

Java:

car *c = malloc(sizeof (car)) ;

c->miles = 100;
c->gals = 17;

Car ¢ = new Car();
c.setMiles (100) ;
c.setGals (17) ;

University of Washington

University of Washington

Memory & data
Integers & floats
Machine code & C
x86 assembly
programming
Procedures &
stacks

float mpg = get mpg(c) ; float mpg =
free(c) ; c.getMPG () ; Arrays & structs
~ — Memory & caches
Assembly get_mpg: Processes
language: SEENGT R Virtual memory
guag movqg %rsp, %rbp Memory
popPq %rbp allocation
ret Javavs. C
1 0S:
A4
Machine 0111010000011000 -- g
de: 100011010000010000000010 A
code: 1000100111000010 L[] !
110000011111101000011111 Windows 8 Mac O
I
] 2
Computer
system: w

University of Washington

The Big Theme: Interfaces and Abstractions

m Computing is about abstractions
= (but we can’t forget reality)

m What are the abstractions that we use?

= What do YOU need to know about them?
= When do they break down and you have to peek under the hood?
® What bugs can they cause and how do you find them?

m How does the hardware (0s and 1s, processor executing

instructions) relate to the software (C/Java programs)?

" Become a better programmer and begin to understand the important
concepts that have evolved in building ever more complex computer
systems

Winter 2013 Introduction 14

University of Washington

Little Theme 1: Representation

m All digital systems represent everything as Os and 1s

" The 0 and 1 are really two different voltage ranges in the wires
“Everything” includes:

= Numbers — integers and floating point

® Characters — the building blocks of strings

" |Instructions — the directives to the CPU that make up a program
" Pointers — addresses of data objects stored away in memory

m These encodings are stored throughout a computer system
® |n registers, caches, memories, disks, etc.

They all need addresses
= A way to find them

® Find a new place to put a new item
= Reclaim the place in memory when data no longer needed

Winter 2013 Introduction 16

University of Washington

Little Theme 2: Translation

m There is a big gap between how we think about programs and
data and the Os and 1s of computers
m Need languages to describe what we mean
m Languages need to be translated one step at a time
= Words, phrases and grammars
m We know Java as a programming language
" Have to work our way down to the Os and 1s of computers
" Try not to lose anything in translation!

= We'll encounter Java byte-codes, C language, assembly language, and
machine code (for the X86 family of CPU architectures)

Winter 2013 Introduction 17

University of Washington

Course Outcomes

m Foundation: basics of high-level programming (Java)

m Understanding of some of the abstractions that exist
between programs and the hardware they run on, why they
exist, and how they build upon each other

= Knowledge of some of the details of underlying
implementations

m Become more effective programmers
= More efficient at finding and eliminating bugs

= Understand some of the many factors that influence program
performance

= Facility with a couple more of the many languages that we use to
describe programs and data

m Prepare for later classes in CSE

Winter 2013 Introduction 19

University of Washington

Little Theme 3: Control Flow

m How do computers orchestrate the many things they are
doing — seemingly in parallel

m What do we have to keep track of when we call a method,
and then another, and then another, and so on

= How do we know what to do upon “return”

m User programs and operating systems
= Multiple user programs
® Operating system has to orchestrate them all
= Each gets a share of computing cycles
= They may need to share system resources (memory, I/0, disks)
" Yielding and taking control of the processor
= Voluntary or “by force”?

Winter 2013 Introduction 18

University of Washington

Reality #1: ints # integers & floats # reals

m Representations are finite
m Example 1: Is x2 2 0?
® Floats: Yes!
" Ints:
= 40000 * 40000 --> 1600000000
= 50000 * 50000 -->??
m Example 2:Is(x+y)+z = x+(y+2)?
® Unsigned & Signed Ints: Yes!
® Floats:
= (1e20 +-1e20) +3.14-->3.14
= 120+ (-1€20 + 3.14) --> ??

Winter 2013 Introduction 20

University of Washington

Reality #2: Assembly still matters

m Why? Because we want you to suffer?

Winter 2013 Introduction 21

University of Washington

Assembly Code Example

m Time Stamp Counter
® Special 64-bit register in Intel-compatible machines
" Incremented every clock cycle
® Read with rdtsc instruction
m Application
= Measure time (in clock cycles) required by procedure

double t;
start counter() ;
P();

t = get_counter();
printf ("P required %f clock cycles\n"”, t);

Winter 2013 Introduction 2

University of Washington

Reality #2: Assembly still matters

m Chances are, you’ll never write a program in assembly code
= Compilers are much better and more patient than you are
m But: understanding assembly is the key to the machine-level
execution model
= Behavior of programs in presence of bugs
= High-level language model breaks down
= Tuning program performance
= Understand optimizations done/not done by the compiler
= Understanding sources of program inefficiency
" |mplementing system software
= Operating systems must manage process state
® Fighting malicious software

= Using special units (timers, /O co-processors, etc.) inside processor!

Winter 2013 Introduction 2

University of Washington

Code to Read Counter

m Write small amount of assembly code using GCC’s asm facility

m Inserts assembly code into machine code generated by
compiler

/* Set *hi and *lo (two 32-bit values) to the
high and low order bits of the cycle counter.

=Y

void access_counter (unsigned *hi, unsigned *lo)
{
asm("rdtsc; movl %%edx,%0; movl $%3eax, 31"
"=r" (*hi), "=r" (*lo) /* output */
/* input */

"$edx", "%eax"); /* clobbered */

Winter 2013 Introduction 2

University of Washington

Reality #3: Memory Matters

m So, what is memory?

Winter 2013 Introduction 25

University of Washington

Memory Referencing Bug Example

double fun(int i)
{
volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

fun(0) -> 3.14

fun(l) -> 3.14

fun(2) -> 3.1399998664856

fun(3) -> 2.00000061035156

fun(4) -—> 3.14, then segmentation fault

Winter 2013 Introduction 27

University of Washington

Reality #3: Memory Matters

m Memory is not unbounded
® |t must be allocated and managed
® Many applications are memory-dominated

m Memory referencing bugs are especially pernicious
= Effects are distant in both time and space

m Memory performance is not uniform

® Cache and virtual memory effects can greatly affect program
performance

= Adapting program to characteristics of memory system can lead to
major speed improvements

Winter 2013 Introduction 26

University of Washington

Memory Referencing Bug Example

double fun(int i)
{

volatile double d[1l] = {3.14};

volatile long int a[2];

a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

fun(0) -> 3.14

fun(l) -> 3.14

fun(2) -> 3.1399998664856

fun(3) -> 2.00000061035156

fun(4) -> 3.14, then segmentation fault

Explanation: saved state 4
d7 .. d4 3
Locati
43 . do 2 oca t.)n accessed by
fun (i)
al[l] 1

a[0]

Winter 2013 Tntroduction 28

o

University of Washington

Memory Referencing Errors

m C(and C++) do not provide any memory protection
= Qut of bounds array references
= |nvalid pointer values
= Abuses of malloc/free
m Can lead to nasty bugs
= Whether or not bug has any effect depends on system and compiler
® Action at a distance
= Corrupted object logically unrelated to one being accessed
= Effect of bug may be first observed long after it is generated
= How can | deal with this?
® Program inJava (or C#, or ML, or ...)
= Understand what possible interactions may occur
= Use or develop tools to detect referencing errors

Winter 2013 Introduction 29

University of Washington

CSE351’s role in CSE Curriculum

m Pre-requisites

® 142 and 143: Intro Programming | and Il

= Also recommended: 390A: System and Software Tools
m One of 6 core courses

® 311: Foundations of Computing |

= 312: Foundations of Computing Il

= 331:SW Design and Implementation

® 332: Data Abstractions

= 351: HW/SW Interface

® 352: HW Design and Implementation

m 351 provides the context for many follow-on courses

Winter 2013 Introduction 31

University of Washington

Memory System Performance Example

m Hierarchical memory organization
m Performance depends on access patterns
" Including how program steps through multi-dimensional array

void copyij(int src[2048][2048], void copyji(int src[2048][2048],

int dst[2048][2048]) int dst[2048][2048])

{ {

int i,3; int i,5;

for (i =0; i< 2048; itt) =~ =—'for (3 = 0; j < 2048; j++)

for (j = 0; j < 2048; j++) = ™ for (i = 0; i < 2048; i++)
dst[i][j] = src[i][]]; dst[i][J] = src[i][]];

} }

21 times slower
(Pentium 4)

Winter 2013 Introduction 30

University of Washington

CSE351’s place in CSE Curriculum

CSE477/481/490/ etc.
Capstone and Project Courses

CSE352 CSE333 CSE451 CSE401 CSE461 CSE484 CSE466
HW Design Prog| | Op Sy C il Networks Security Emb Systems|

S N1 ety e
istril Xxecution
Performance Concurrency Dlsstntbuted Model
Machine ystems g
Comp. Arch. Code Real-Time
\ | / Control
CSE351 | The HW/SW Interface:

underlying principles linking
hardware and software

Cs 143
Intro Prog Il

Winter 2013 Introduction 32

University of Washington

Course Perspective

m This course will make you a better programmer

Winter 2013

University of Washington

= Purpose is to show how software really works

= By understanding the underlying system, one can be more effective as a
programmer

= Better debugging

= Better basis for evaluating performance

= How multiple activities work in concert (e.g., OS and user programs)
= Not just a course for dedicated hackers

= What every CSE major needs to know

= Job interviewers love to ask questions from 351!
= Provide a context in which to place the other CSE courses you’ll take

Introduction el

Course Components

Winter 2013

Lectures (27)
" Introduce the concepts; supplemented by textbook
Sections (10)

= Applied concepts, important tools and skills for labs, clarification of
lectures, exam review and preparation

Written homework assignments (4)

" Mostly problems from text to solidify understanding

Labs (5, plus “lab 0”)

" Provide in-depth understanding (via practice) of an aspect of system
Exams (midterm + final)

® Test your understanding of concepts and principles

® Midterm currently scheduled for Friday, February 15

Introduction 35

University of Washington

Textbooks

m Computer Systems: A Programmer’s Perspective, 2" Edition
= Randal E. Bryant and David R. O’Hallaron
= Prentice-Hall, 2010
= http://csapp.cs.cmu.edu

=
COMPUTER SYSTEMS
4 Progammar’s Perspecive

® This book really matters for the course!
= How to solve labs

= Practice problems typical of exam problems Bryant - O'Hallaron

m A good C book — any will do
= The C Programming Language (Kernighan and Ritchie)
= (C: A Reference Manual (Harbison and Steele)

Winter 2013 Introduction 3

University of Washington

Resources

m Course web page
= http://www.cse.washington.edu/351
= Schedule, policies, labs, homeworks, and everything else
m Course discussion board
= Keep in touch outside of class — help each other
= Staff will monitor and contribute
m Course mailing list
= |ow traffic — mostly announcements; you are already subscribed
Office hours
= Will be posted this week
m Staff e-mail
® Things that are not appropriate for discussion board or better offline
Anonymous feedback

= Any comments about anything related to the course where you would
feel better not attaching your name

Winter 2013 Introduction 36

University of Washington

Policies: Grading

Exams (40%): 15% midterm, 25% final

Written assignments (20%): weighted according to effort

= We'll try to make these about the same
m Lab assignments (40%): weighted according to effort

= These will likely increase in weight as the quarter progresses
m Late days:

= 3 ate days to use as you wish throughout the quarter — see website
m Collaboration:

= http://www.cs.washington.edu/education/courses/cse351/13wi/
policies.html
= http://www.cs.washington.edu/students/policies/misconduct

Winter 2013 Introduction 37

University of Washington

Welcome to CSE351!

Let’s have fun
Let’s learn — together
Let’s communicate

Let’s make this a useful class for all of us

m Many thanks to the many instructors who have shared their
lecture notes — | will be borrowing liberally through the qtr —
they deserve all the credit, the errors are all mine

= CMU: Randy Bryant, David O’Halloran, Gregory Kesden, Markus Puschel
® Harvard: Matt Welsh (now at Google-Seattle)
= UW: Gaetano Borriello, Luis Ceze, Hal Perkins, John Zahorjan

Winter 2013 Introduction 38

