University of Washington

Data Structures in Assembly

m Arrays
" One-dimensional
" Multi-dimensional (nested)
" Multi-level

m Structs
= Alignment

m Unions

University of Washington

Structures
struct rec { Memory Layout
int 1i;
int a[3]; ila P
} int* p; 0O 4 16 20

m Characteristics
= Contiguously-allocated region of memory
= Refer to members within structure by names
= Members may be of different types

University of Washington

Structures
struct rec {
m Accessing Structure Member int i;
= Given an instance of the struct, we can use ’_'nt a[3];
int* p;

the . operator, just like Java: }

» struct rec rl; rl.i = wval;

= What if we have a pointer to a struct: struct rec* r = &rl;

University of Washington

Structures
struct rec {
m Accessing Structure Member int i;
= Given an instance of the struct, we can use ?nt*a [31;
the . operator, just like Java: };lnt B
= struct rec rl; rl.i = val;
= What if we have a pointer to a struct: struct rec* r = &rl;
= Using * and . operators: (*r) .1 = val;
= Or, use —=> operator forshort: r->i = wval;

= Pointer indicates first byte of structure; access members with offsets

void
set i(struct rec* r, IA32 Assembly
int val) # %eax = val
{ # %edx = r
r->i = val; movl %eax,0(%edx) # Mem[r+0] = val
}

University of Washington

Generating Pointer to Structure Member

struct rec { .
*
int i r r+4+4*i1dx
int a[3];
}-mt* v i|a P
0O 4 16 20
. . ,
= Generating Pointer to int* find address of elem
Array Element (struct rec* r, int idx)
= Offset of each structure {
member determined return &r->a[idx];
at compile time } \

\

& (r->a[idx])

%ecx = idx
%edx = r

leal 0(,%ecx,4) ,%eax # 4*idx
leal 4 (%eax,%edx) ,%eax # r+4*idx+4

University of Washington

Generating Pointer to Structure Member

struct rec {
int 1i;
int a[3];
int* p;

};

m Generating Pointer to
Array Element
= QOffset of each structure

member determined
at compile time

r r+4+4*i1dx

ila P
0O 4 16 20

int* find address of elem
(struct rec* r, int idx)

{

return &r->a[idx];

} N\

\

& (r->a[idx])

%ecx = idx OR
%edx = r

leal 4 (%eax,%edx,4) ,%eax # r+4*idx+4

University of Washington

Accessing to Structure Member

struct rec { .
*
int i r r+4+4*idx
int a[3];
int* p; .
ila
}; k
0O 4 16 20
- Readmg Array Element int* find address of elem
= Offset of each structure (struct rec* r, int idx)
member still determined {
at compile time return &r->a[idx];

}

%$ecx = idx
%edx = r
movl 4 (%eax,%edx,4) ,%eax # Mem[r+4*idx+4]

University of Washington

Structures & Alignment

m Unaligned Data

struct S1 {
char c;

double v;
p p+l p+9 p+13 int 1i;

} * p;

C v i

m How would it look like if data items were aligned (address
multiple of type size) ?

University of Washington

Structures & Alignment

m Unaligned Data struct S1 {
. char c;
c v - double v;
p p+l p+9 p+13 int i;
} *ops
m Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K
C v i
p+0 p+8 p+16 p+20
Multiple of 8 Multiple of 4

internal fragmentation

University of Washington

Alignment Principles
m Aligned Data

" Primitive data type requires K bytes
= Address must be multiple of K

m Aligned data is required on some machines; it is advised
on IA32
" Treated differently by IA32 Linux, x86-64 Linux, Windows, Mac OS X, ...

m What is the motivation for alighment?

10

University of Washington

Alignment Principles

m Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K

m Aligned data is required on some machines; it is advised
on IA32

" Treated differently by IA32 Linux, x86-64 Linux, Windows, Mac OS X, ...
m Motivation for Aligning Data

= Physical memory is accessed by aligned chunks of 4 or 8 bytes (system-
dependent)

= |nefficient to load or store datum that spans these boundaries
= Also, virtual memory is very tricky when datum spans two pages (later...)
m Compiler

" |nserts padding in structure to ensure correct alignment of fields
" sizeof () should be used to get true size of structs

11

University of Washington

Specific Cases of Alignment (I1A32)

m 1 byte: char, ...
" no restrictions on address
m 2 bytes: short, ...
= |owest 1 bit of address must be 0,
m 4 bytes: int, float, char ¥, ...
= lowest 2 bits of address must be 00,
m 8 bytes: double, ...
= Windows (and most other OSs & instruction sets): lowest 3 bits 000,

= Linux: lowest 2 bits of address must be 00,
= j.e., treated liked 2 contiguous 4-byte primitive data items

12

Saving Space

m Put large data types first:

struct S1 { struct S2 {
char c; double v;
double v; int 1i;
int 1i; char c;

} * p; } * q;

m Effect (example x86-64, both have K=8)

Cc v i
p+0 p+8 pt+16 p+20

v i e But actually...
q+0 q+8 q+l2 gq+13

13

University of Washington

Struct Alignment Principles

m Size must be a multiple of the largest primitive type inside.

K=8 so sizemod8=0

p+0 p+8 pt+16 p+20

qg+0 qgt+8 q+l2 q+l6

14

University of Washington

Arrays of Structures

m Satisfy alignment requirement struct S2 {
for every element double v;
. int i;
m How would accessing an element work? | ;.. .
} a[l0];
af0] all] al[2] eo o
a+0 a+leé a+32 a+64
v i c
a+16 a+24 a+28 '\ a+32

external fragmentation .

University of Washington

Unions

m Allocated according to largest element
m Can only use one member at a time

union U {
char c;
int i[2];
double v; i[0] i[1]

} *up;

struct S { up+0 up+4 up+8
char c;
int i[2];
double v;
} *sp;

c i[O0] i[l] v
sp+0 sp+4 sp+8 sp+16 sp+24

16

University of Washington

What Are Unions Good For?

m Unions allow the same region of memory to be referenced as
different types

= Different “views” of the same memory location
= Can be used to circumvent C’s type system (bad idea)

m Better idea: use a struct inside a union to access some
memory location either as a whole or by its parts

17

University of Washington

Unions For Embedded Programming

typedef union
{

unsigned char byte;
struct {
unsigned char b0:1;

(Note: the placement of these
unsigned char bl:1; fields and other parts of this

unsigned char b2:1; example are implementation-

unsigned char b3:1; dependent)
unsigned char reserved:4;
} bits;
} hw _register;

hw register reg;

reg.byte = 0x3F; // 00111111,
reg.bits.b2 = 0; // 00111011,
reg.bits.b3 = 0; // 00110011,
unsigned short a = reg.byte;

printf ("0x%X\n", a); // output: 0x33

18

University of Washington

Summary

m ArraysinC
® Contiguous allocations of memory
= No bounds checking
= Can usually be treated like a pointer to first element

m Structures
= Allocate bytes in order declared
= Padin middle and at end to satisfy alighment

m Unions
" Provide different views of the same memory location

19

University of Washington

20

University of Washington

Midterm Exam: Friday, July 26, in class

memory organization and addressing
integer representations

floating point representations

x86 assembly programming, IA32 + x86-64
= addressing, arithmetic, basics
= control flow

= procedures, stacks, and associated conventions

m pointers, arrays, and structs
m translation from C to assembly and back

= for all of the above, except floating point

21

University of Washington

Midterm Exam: Friday, July 26, in class

m Closed book, closed notes, closed electronics, open mind!

m We provide you with:
= A list of powers of 2 in decimal (e.g., 210 = 1024)
= A list of x86 assembly instructions and their meanings.
m Likely: open Q+A review session(s)
= Your bring questions or we pick random problems from past exams.

= Part of section on Thursday (vs. lots of buffer overflow fun)
= Part of lecture Wednesday if we’re ahead (I expect so)

m HW 2 is good review.
m Lab 2 got you thinking in all the right ways about assembly.

22

