Roadmap

C:
```c
car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);
```

Java:
```java
Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg = c.getMPG();
```

Assembly language:
```assembly
get_mpg:
  pushq  %rbp
  movq   %rsp, %rbp
  ...
  popq   %rbp
  ret
```

Machine code:
```
0111010000011000
100011010000010000000010
100010011110000010
1100000111111110100001111
```

Computer system:

Data & addressing
Integers & floats
Machine code & C
x86 assembly
programming
Procedures & stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

OS:

Windows 8
Mac

Wireframes:
Integers

- Representation of integers: unsigned and signed
- Casting
- Arithmetic and shifting
- Sign extension
But before we get to integers....

- Encode a standard deck of playing cards.
- 52 cards in 4 suits
 - How do we encode suits, face cards?
- What operations do we want to make easy to implement?
 - Which is the higher value card?
 - Are they the same suit?
Two possible representations

- 52 cards – 52 bits with bit corresponding to card set to 1

- “One-hot” encoding

- Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required
Two possible representations

- 52 cards – 52 bits with bit corresponding to card set to 1

 low-order 52 bits of 64-bit word

 - “One-hot” encoding
 - Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required

- 4 bits for suit, 13 bits for card value – 17 bits with two set to 1

 - Pair of one-hot encoded values
 - Easier to compare suits and values
 - Still an excessive number of bits

Can we do better?
Two better representations

- Binary encoding of all 52 cards – only 6 bits needed
 - Fits in one byte
 - Smaller than one-hot encodings.
 - How can we make value and suit comparisons easier?

low-order 6 bits of a byte
Two better representations

- Binary encoding of all 52 cards – only 6 bits needed

 - Fits in one byte
 - Smaller than one-hot encodings.
 - How can we make value and suit comparisons easier?

- Binary encoding of suit (2 bits) and value (4 bits) separately

 - Also fits in one byte, and easy to do comparisons
Compare Card Suits

```c
#define SUIT_MASK  0x30

int sameSuitP(char card1, char card2) {
    return (! (card1 & SUIT_MASK) ^ (card2 & SUIT_MASK));
    //return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}
```

- `SUITE_MASK = 0x30` is equivalent to `00110000`.

- `char hand[5];` represents a 5-card hand.
- `char card1, card2;` are two cards to compare.
- `card1 = hand[0];`
- `card2 = hand[1];`
- `if (sameSuitP(card1, card2)) { ... }`

mask: a bit vector that, when bitwise ANDed with another bit vector \(v \), turns all but the bits of interest in \(v \) to 0.
Compare Card Values

```c
#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
    return ((unsigned int)(card1 & VALUE_MASK) >
            (unsigned int)(card2 & VALUE_MASK));
}
```

VALUE_MASK = 0x0F = 0 0 0 0 1 1 1 1

- mask: a bit vector that, when bitwise ANDed with another bit vector \(v \), turns all but the bits of interest in \(v \) to 0.

- works even if value is stored in high bits

```c
char hand[5]; // represents a 5-card hand
char card1, card2; // two cards to compare
card1 = hand[0];
card2 = hand[1];
...
if ( greaterValue(card1, card2) ) { ... }
```
Announcements

- Everyone who’s registered turned in Lab 0, did well, and got credit!
- Let’s make sure everyone who thinks they’re registered is.
 - Auditors welcome!
- Section meeting Friday, July 5, 10:50am – 11:50am in CSE 303.
 - Right after lecture.
- Lab 1: trouble compiling with make? Jacob made a very small fix over the weekend.
Encoding Integers

- The hardware (and C) supports two flavors of integers:
 - *unsigned* – only the non-negatives
 - *signed* – both negatives and non-negatives

- There are only 2^W distinct bit patterns of W bits, so...
 - Can not represent all the integers
 - **Unsigned values:** 0 ... 2^{W-1}
 - **Signed values:** -2^{W-1} ... $2^{W-1}-1$

- Reminder: terminology for binary representations
 - “Most-significant” or “high-order” bit(s)
 - “Least-significant” or “low-order” bit(s)

 \[0110010110101001\]
Unsigned Integers

- Unsigned values are just what you expect
 - \[b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + b_52^5 + \ldots + b_12^1 + b_02^0 \]
 - Useful formula: \[1+2+4+8+\ldots+2^{N-1} = 2^N - 1 \]

- Add and subtract using the normal “carry” and “borrow” rules, just in binary.

- How would you make signed integers?
Signed Integers: Sign-and-Magnitude

- Let's do the natural thing for the positives
 - They correspond to the unsigned integers of the same value
 - Example (8 bits): 0x00 = 0, 0x01 = 1, ..., 0x7F = 127

- But, we need to let about half of them be negative
 - Use the **high-order bit** to indicate *negative*: call it the “**sign bit**”
 - Call this a “sign-and-magnitude” representation
 - Examples (8 bits):
 - 0x00 = 00000000₂ is non-negative, because the sign bit is 0
 - 0x7F = 01111111₂ is non-negative
 - 0x85 = 10000101₂ is negative
 - 0x80 = 10000000₂ is negative...
Signed Integers: Sign-and-Magnitude

- How should we represent -1 in binary?
 - 10000001_2
 - Use the MSB for + or -, and the other bits to give magnitude.
Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - 10000001_2
 - Use the MSB for + or -, and the other bits to give magnitude.
 - (Unfortunate side effect: there are two representations of 0!)

![Diagram showing binary representations of numbers from -7 to +7]
Sign-and-Magnitude Negatives

How should we represent -1 in binary?

- \(10000001_2\)
 Use the MSB for + or -, and the other bits to give magnitude.
 (Unfortunate side effect: there are two representations of 0!)

- Another problem: \textit{arithmetic is cumbersome}.

 Example:
 \[4 - 3 \neq 4 + (-3)\]

How do we solve these problems?
Two’s Complement Negatives

- How should we represent -1 in binary?
Two’s Complement Negatives

How should we represent -1 in binary?

Rather than a sign bit, let MSB have same value, but negative weight.

\(b_{w-1} = 1 \) adds \(-2^{w-1}\) to the value. for \(i < w-1 \): \(b_i = 1 \) adds \(+2^i\) to the value.
Two’s Complement Negatives

How should we represent -1 in binary?

Rather than a sign bit, let MSB have same value, but *negative weight*.

\[b_{w-1} = 1 \text{ adds } -2^{w-1} \text{ to the value.} \]

\[\text{for } i < w-1: \ b_i = 1 \text{ adds } +2^i \text{ to the value.} \]

\[b_{w-1} b_{w-2} \ldots b_0 \]

e.g. *unsigned* 1010_2:

\[1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 10_{10} \]

2’s compl. 1010_2:

\[-1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = -6_{10} \]
Two’s Complement Negatives

- How should we represent -1 in binary?
 Rather than a sign bit, let MSB have same value, but \textit{negative weight}.
 \[b_{w-1} = 1 \text{ adds } -2^{w-1} \text{ to the value.} \]
 \[\text{for } i < w-1: \ b_i = 1 \text{ adds } +2^i \text{ to the value.} \]

- e.g. \textit{unsigned} 1010_2:
 \[1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 10_{10} \]
 \textit{2’s compl.} 1010_2:
 \[-1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = -6_{10} \]

- -1 is represented as 1111_2 = -2^3 + (2^3 - 1)
 All negative integers still have MSB = 1.

- \textbf{Advantages:} single zero, simple arithmetic

- \textbf{To get negative representation of any integer, take bitwise complement and then add one!}
 \[\sim x + 1 == -x \]
Two’s Complement Arithmetic

- The same addition procedure works for both unsigned and two’s complement integers
 - Simplifies hardware: only one algorithm for addition
 - Algorithm: simple addition, discard the highest carry bit
 - Called “modular” addition: result is sum \(\text{modulo } 2^w \)

- Examples:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0100</td>
<td>+ 3</td>
<td>4</td>
<td>0100</td>
<td>− 3</td>
<td>+ 1101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ 0011</td>
<td></td>
<td></td>
<td>− 3</td>
<td>+ 0011</td>
</tr>
<tr>
<td>= 7</td>
<td>= 0111</td>
<td>= 1</td>
<td>drop carry</td>
<td>= 0001</td>
<td>= 1</td>
<td>= 1111</td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>− 4</td>
<td>1100</td>
<td>+ 3</td>
<td>− 4</td>
<td>1100</td>
<td>+ 3</td>
<td>+ 0011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ 0011</td>
<td></td>
<td></td>
<td>− 3</td>
<td>+ 0011</td>
</tr>
<tr>
<td>= 7</td>
<td>= 0111</td>
<td>= 1</td>
<td>drop carry</td>
<td>= 0001</td>
<td>= 1</td>
<td>= 1111</td>
</tr>
</tbody>
</table>
Two’s Complement

Why does it work?

- Put another way, for all positive integers x, we want:
 - $\text{bits}(x) + \text{bits}(−x) = 0$ (ignoring the carry-out bit)

- This turns out to be the \textit{bitwise complement plus one}
 - What should the 8-bit representation of -1 be?
 - 00000001
 - $+????????$ (we want whichever bit string gives the right result)
 - 00000000
 - 00000000
 - $+????????$ $+????????$
 - 00000000 00000000
Two’s Complement

- Why does it work?
 - Put another way, for all positive integers x, we want:
 - $\text{bits}(x) + \text{bits}(−x) = 0$ (ignoring the carry-out bit)
 - This turns out to be the bitwise complement plus one
 - What should the 8-bit representation of -1 be?
 00000001
 +11111111
 100000000

 00000010
 +????????
 00000000

 00000011
 +????????
 00000000
Two’s Complement

Why does it work?

- Put another way, for all positive integers x, we want:
 - $\text{bits}(x) + \text{bits}(-x) = 0$ (ignoring the carry-out bit)

- This turns out to be the *bitwise complement plus one*
 - What should the 8-bit representation of -1 be?
 - $00000001 + 11111111 = 100000000$ (we want whichever bit string gives the right result)
 - $00000010 + 11111110 = 100000000$
 - $00000011 + 11111101 = 100000000$
Unsigned & Signed Numeric Values

- Signed and unsigned integers have limits.
 - If you compute a number that is too big (positive), it wraps:
 \[6 + 4 = ? \quad 15U + 2U = ? \]
 - If you compute a number that is too small (negative), it wraps:
 \[-7 - 3 = ? \quad 0U - 2U = ? \]
 - Answers are only correct mod \(2^b\)

- The CPU may be capable of “throwing an exception” for overflow on signed values.
 - It won't for unsigned.

- But C and Java just cruise along silently when overflow occurs... Oops.
Conversion Visualized

- **Two’s Complement → Unsigned**
 - Ordering Inversion
 - Negative → Big Positive

Diagram showing 2’s Complement Range and Unsigned Range with corresponding values like T_{Max}, T_{Min}, U_{Max}, $U_{Max} - 1$, $T_{Max} + 1$, and T_{Max}.
Values To Remember

- **Unsigned Values**
 - $\text{UMin} = 0$
 - $000...0$
 - $\text{UMax} = 2^w - 1$
 - $111...1$

- **Two’s Complement Values**
 - $\text{TMin} = -2^{w-1}$
 - $100...0$
 - $\text{TMax} = 2^{w-1} - 1$
 - $011...1$
 - Negative one
 - $111...1$ $0xF...F$

Values for $W = 32$

<table>
<thead>
<tr>
<th></th>
<th>Decimals</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>$4,294,967,296$</td>
<td>FF FF FF FF</td>
<td>$11111111 11111111 11111111 11111111$</td>
</tr>
<tr>
<td>Tmax</td>
<td>$2,147,483,647$</td>
<td>7F FF FF FF</td>
<td>$01111111 11111111 11111111 11111111$</td>
</tr>
<tr>
<td>TMin</td>
<td>$-2,147,483,648$</td>
<td>80 00 00 00</td>
<td>$10000000 00000000 00000000 00000000$</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF FF FF</td>
<td>$11111111 11111111 11111111 11111111$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00 00 00</td>
<td>$00000000 00000000 00000000 00000000$</td>
</tr>
</tbody>
</table>
Signed vs. Unsigned in C

- **Constants**
 - By default are considered to be signed integers
 - Use “U” suffix to force unsigned:
 - \(0U, 4294967259U\)
Signed vs. Unsigned in C

Casting

- int tx, ty;
- unsigned ux, uy;

- Explicit casting between signed & unsigned:
 - tx = (int) ux;
 - uy = (unsigned) ty;

- Implicit casting also occurs via assignments and function calls:
 - tx = ux;
 - uy = ty;

- The gcc flag -Wsign-conversion produces warnings for implicit casts, but -Wall does not!

- How does casting between signed and unsigned work?
- What values are going to be produced?
Signed vs. Unsigned in C

- Casting
 - `int tx, ty;`
 - `unsigned ux, uy;`
 - Explicit casting between signed & unsigned:
 - `tx = (int) ux;`
 - `uy = (unsigned) ty;`
 - Implicit casting also occurs via assignments and function calls:
 - `tx = ux;`
 - `uy = ty;`
 - The gcc flag `-Wsign-conversion` produces warnings for implicit casts, but `-Wall` does not!

- How does casting between signed and unsigned work?
- What values are going to be produced?
 - *Bits are unchanged*, just interpreted differently!
Casting Surprises

Expression Evaluation

- If you mix unsigned and signed in a single expression, then
 signed values are implicitly cast to unsigned.

- Including comparison operations <, >, ==, <=, >=

- Examples for $W = 32$: $T_{MIN} = -2,147,483,648$ $T_{MAX} = 2,147,483,647$

<table>
<thead>
<tr>
<th>Constant_1</th>
<th>Constant_2</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483648</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483648</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned)-1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Sign Extension

- What happens if you convert a 32-bit signed integer to a 64-bit signed integer?
Sign Extension

- **Task:**
 - Given w-bit signed integer x
 - Convert it to $w+k$-bit integer *with same value*

- **Rule:**
 - Make k copies of sign bit:
 - $X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0$

![Diagram showing sign extension process](diagram.png)
Sign Extension Example

- Converting from smaller to larger integer data type
- C automatically performs sign extension. (Java too)

```java
short int x = 12345;
int ix = (int) x;
short int y = -12345;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>12345</td>
<td>30 39</td>
<td>00110000 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>12345</td>
<td>00 00 30 39</td>
<td>00000000 00000000 00110000 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-12345</td>
<td>CF C7</td>
<td>11001111 11000111</td>
</tr>
<tr>
<td>iy</td>
<td>-12345</td>
<td>FF FF CF C7</td>
<td>11111111 11111111 11001111 11000111</td>
</tr>
</tbody>
</table>
Shift Operations

- **Left shift:** \(x << y \)
 - Shift bit vector \(x \) left by \(y \) positions
 - Throw away extra bits on left
 - Fill with 0s on right

- **Right shift:** \(x >> y \)
 - Shift bit-vector \(x \) right by \(y \) positions
 - Throw away extra bits on right
 - Logical shift (for unsigned values)
 - Fill with 0s on left
 - Arithmetic shift (for signed values)
 - Replicate most significant bit on left
 - Maintains sign of \(x \)

<table>
<thead>
<tr>
<th>Argument x</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Logical >> 2</td>
<td>00011000</td>
</tr>
<tr>
<td>Arithmetic >> 2</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument x</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Logical >> 2</td>
<td>00101000</td>
</tr>
<tr>
<td>Arithmetic >> 2</td>
<td>11101000</td>
</tr>
</tbody>
</table>

The behavior of \(>> \) in C depends on the compiler! It is *arithmetic* shift right in GCC. Java: \(>>> \) is logical shift right; \(>> \) is arithmetic shift right.
Shift Operations

- **Left shift:** \(x << y \)
 - Shift bit vector \(x \) left by \(y \) positions
 - Throw away extra bits on left
 - Fill with 0s on right

- **Right shift:** \(x >> y \)
 - Shift bit-vector \(x \) right by \(y \) positions
 - Throw away extra bits on right
 - Logical shift (for unsigned values)
 - Fill with 0s on left
 - **Arithmetic shift** (for signed values)
 - Replicate most significant bit on left
 - Maintains sign of \(x \)
 - *Why is this useful?*

<table>
<thead>
<tr>
<th>Argument x</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td></td>
</tr>
<tr>
<td>Logical (>> 2)</td>
<td></td>
</tr>
<tr>
<td>Arithmetic (>> 2)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument x</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td></td>
</tr>
<tr>
<td>Logical (>> 2)</td>
<td></td>
</tr>
<tr>
<td>Arithmetic (>> 2)</td>
<td></td>
</tr>
</tbody>
</table>

\(x >> 9? \)

The behavior of \(>> \) in C depends on the compiler! It is *arithmetic* shift right in GCC. Java: \(>>> \) is logical shift right; \(>> \) is arithmetic shift right.
What happens when...

- $x >> n$
- $x << m$
What happens when...

- x >> n: divide by 2^n

- x << m: multiply by 2^m

faster than general multiple or divide operations
Using Shifts and Masks

- Extract the 2nd most significant byte of an integer?

```
  x  01100001 01100010 01100011 01100100
```
Using Shifts and Masks

- Extract the 2nd most significant byte of an integer:
 - First shift, then mask: \((x \gg 16) \& 0xFF\)

<table>
<thead>
<tr>
<th>x</th>
<th>01100001 01100010 01100011 01100100</th>
</tr>
</thead>
<tbody>
<tr>
<td>x >> 16</td>
<td>00000000 00000000 01100001 01100010</td>
</tr>
<tr>
<td>(x >> 16) & 0xFF</td>
<td>00000000 00000000 00000000 11111111</td>
</tr>
<tr>
<td></td>
<td>00000000 00000000 00000000 01100010</td>
</tr>
</tbody>
</table>

- Extract the sign bit of a signed integer?
Using Shifts and Masks

- **Extract the 2nd most significant byte of an integer:**
 - First shift, then mask: \((x \gg 16) \& 0xFF\)

<table>
<thead>
<tr>
<th>(x)</th>
<th>01100001 01100010 01100011 01100100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \gg 16)</td>
<td>00000000 00000000 01100001 01100010</td>
</tr>
<tr>
<td>((x \gg 16) & 0xFF)</td>
<td>00000000 00000000 00000000 11111111 00000000 00000000 01100010</td>
</tr>
</tbody>
</table>

- **Extract the sign bit of a signed integer:**
 - \((x \gg 31) \& 1\) - need the “& 1” to clear out all other bits except LSB

- **Conditionals as Boolean expressions** *(assuming \(x\) is 0 or 1)*
 - if \((x)\) \(a=y\) else \(a=z\); which is the same as \(a = x \? y : z\);
 - Can be re-written (assuming arithmetic right shift) as:
 \(a = (x << 31) \gg 31 \& y + (\neg x) << 31 \gg 31 \) & \(z\);
Multiplication

- What do you get when you multiply 9×9?

- What about $2^{30} \times 3$?

- $2^{30} \times 5$?

- $-2^{31} \times -2^{31}$?
Unsigned Multiplication in C

Operands: \(w \) bits

True Product: \(2^w \) bits

Discard \(w \) bits: \(w \) bits

- **Standard Multiplication Function**
 - Ignores high order \(w \) bits

- **Implements Modular Arithmetic**
 \[\text{UMult}_w(u, v) = u \cdot v \mod 2^w \]
Power-of-2 Multiply with Shift

Operation

- \(u \ll k \) gives \(u \times 2^k \)
- Both signed and unsigned

Operands: \(w \) bits

<table>
<thead>
<tr>
<th>u (\times 2^k)</th>
<th>0 (\cdots)</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>(\cdots)</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
</table>

True Product: \(w+k \) bits

<table>
<thead>
<tr>
<th>u (\cdot 2^k)</th>
<th>0 (\cdots)</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>(\cdots)</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
</table>

Discard \(k \) bits: \(w \) bits

UMult\(_w\)(\(u \), \(2^k \))
TMult\(_w\)(\(u \), \(2^k \))

Examples

- \(u \ll 3 \) \(\equiv \) \(u \times 8 \)
- \(u \ll 5 - u \ll 3 \) \(\equiv \) \(u \times 24 \)
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically
Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void* user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, MSIZE);
 printf("%s\n", mybuf);
}
Malicious Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void* user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, -MSIZE);
 ...
Floats! Later in the quarter...

- How do we represent fractional numbers?
- If you’re curious now, read the book, check out the videos.
- We’ll return to this topic later if we have time.