Roadmap

Data & addressing
Integers & floats
Machine code & C
Machine code & C
x86 assembly
programming
Procedures &
stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

But before we get to integers....

- Encode a standard deck of playing cards.
- 52 cards in 4 suits
 - How do we encode suits, face cards?
- What operations do we want to make easy to implement?
 - Which is the higher value card?
 - Are they the same suit?

Integers

- Representation of integers: unsigned and signed
- Casting
- Arithmetic and shifting
- Sign extension

Two possible representations

- 52 cards – 52 bits with bit corresponding to card set to 1

 low-order 52 bits of 64-bit word

- “One-hot” encoding
- Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required
Two possible representations

- 52 cards – 52 bits with bit corresponding to card set to 1
 - “One-hot” encoding
 - Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required

- 4 bits for suit, 13 bits for card value – 17 bits with two set to 1
 - Pair of one-hot encoded values
 - Easier to compare suits and values
 - Still an excessive number of bits

- Can we do better?

Two better representations

- Binary encoding of all 52 cards – only 6 bits needed
 - Fits in one byte
 - Smaller than one-hot encodings.
 - How can we make value and suit comparisons easier?

- Binary encoding of suit (2 bits) and value (4 bits) separately
 - Also fits in one byte, and easy to do comparisons

Compare Card Suits

```c
#define SUIT_MASK  0x30

int sameSuitP(char card1, char card2) {
    return (! (card1 & SUIT_MASK) ^ (card2 & SUIT_MASK));
    //return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}
```

char hand[5]; // represents a 5-card hand
char card1, card2; // two cards to compare
 card1 = hand[0];
 card2 = hand[1];
...
if (sameSuitP(card1, card2)) { ... }
Define VALUE_MASK 0x0F

```c
#define VALUE_MASK 0x0F
```

```c
int greaterValue(char card1, char card2) {
    return ((unsigned int)(card1 & VALUE_MASK) >
            (unsigned int)(card2 & VALUE_MASK));
}
```

```
VALUE_MASK = 0x0F = 0 0 0 0 1 1 1 1
```

```c
char hand[5]; // represents a 5-card hand
char card1, card2; // two cards to compare
card1 = hand[0];
card2 = hand[1];
...
if ( greaterValue(card1, card2) ) { ... }
```

Encoding Integers

- The hardware (and C) supports two flavors of integers:
 - `unsigned` – only the non-negatives
 - `signed` – both negatives and non-negatives

- There are only 2^W distinct bit patterns of W bits, so...
 - Can not represent all the integers
 - **Unsigned values**: $0 ... 2^W - 1$
 - **Signed values**: $-2^{W-1} ... 2^{W-1} - 1$

- **Reminder: terminology for binary representations**
 - "Most-significant" or "high-order" bit(s)
 - "Least-significant" or "low-order" bit(s)

```
0110010110101001
```

Announcements

- Everyone who's registered turned in Lab 0, did well, and got credit!
- Let's make sure everyone who thinks they're registered is.
 - Auditors welcome!
- **Section meeting Friday, July 5, 10:50am – 11:50am in CSE 303.**
 - Right after lecture.
- **Lab 1: trouble compiling with make?** Jacob made a very small fix over the weekend.

Unsigned Integers

- **Unsigned values are just what you expect**
 - $b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + b_52^5 + ... + b_12^1 + b_02^0$
 - Useful formula: $1 + 2 + 4 + 8 + ... + 2^{W-1} = 2^W - 1$

- **Add and subtract using the normal “carry” and “borrow” rules, just in binary.**

```
00111111 +00001000
01000111
```

- **How would you make signed integers?**
Signed Integers: Sign-and-Magnitude

- Let's do the natural thing for the positives
 - They correspond to the unsigned integers of the same value
 - Example (8 bits): 0x00 = 0, 0x01 = 1, ..., 0x7F = 127
- But, we need to let about half of them be negative
 - Use the high-order bit to indicate negative: call it the "sign bit"
 - Call this a "sign-and-magnitude" representation
 - Examples (8 bits):
 - 0x00 = 00000000₂ is non-negative, because the sign bit is 0
 - 0x7F = 11111111₂ is non-negative
 - 0x85 = 10000101₂ is negative
 - 0x80 = 10000000₂ is negative...

Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - 10000001₂
 - Use the MSB for + or -, and the other bits to give magnitude.
 - (Unfortunate side effect: there are two representations of 0!)

Signed Integers: Sign-and-Magnitude

- How should we represent -1 in binary?
 - 10000001₂
 - Use the MSB for + or -, and the other bits to give magnitude.
 - (Unfortunate side effect: there are two representations of 0!)
 - Another problem: arithmetic is cumbersome.
 - Example:
 - 4 - 3 = 4 + (-3)

How do we solve these problems?
Two’s Complement Negatives

How should we represent -1 in binary?

Rather than a sign bit, let MSB have same value, but negative weight.

\[b_{w-1} = 1 \text{ adds } -2^{w-1} \text{ to the value. } \]

for \(i < w-1 \): \(b_i = 1 \text{ adds } +2^i \text{ to the value.} \)

e.g. unsigned 1010:

\[1*2^2 + 0*2^1 + 1*2^0 = 10_{10} \]

2’s compl. 1010:

\[-1*2^2 + 0*2^1 + 1*2^0 = -6_{10} \]

To get negative representation of any integer, take bitwise complement and then add one!

\[\sim x + 1 = -x \]
Two’s Complement Arithmetic

- The same addition procedure works for both unsigned and two’s complement integers
 - Simplifies hardware: only one algorithm for addition
 - Algorithm: simple addition, discard the highest carry bit
 - Called “modular” addition: result is sum modulo 2^n

- Examples:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>+3</td>
<td>+0011</td>
<td>-3</td>
</tr>
<tr>
<td>=7</td>
<td>=0111</td>
<td>=1</td>
</tr>
<tr>
<td>drop carry</td>
<td>=0001</td>
<td></td>
</tr>
</tbody>
</table>

Two’s Complement

- Why does it work?
 - Put another way, for all positive integers x, we want:
 - $\text{bits}(x) + \text{bits}(-x) = 0$ (ignoring the carry-out bit)
 - This turns out to be the bitwise complement plus one
 - What should the 8-bit representation of -1 be?
 - 00000001
 - +1111111 (we want whichever bit string gives the right result)
 - 00000000
 - 00000011
 - +????????
 - +????????
 - 00000000

Two’s Complement

- Why does it work?
 - Put another way, for all positive integers x, we want:
 - $\text{bits}(x) + \text{bits}(-x) = 0$ (ignoring the carry-out bit)
 - This turns out to be the bitwise complement plus one
 - What should the 8-bit representation of -1 be?
 - 00000001
 - +1111111 (we want whichever bit string gives the right result)
 - 00000000
 - 00000011
 - +????????
 - +????????
 - 00000000
Unsigned & Signed Numeric Values

<table>
<thead>
<tr>
<th>bits</th>
<th>Unsigned</th>
<th>Signed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>–8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>–7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>–6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>–5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>–4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>–3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>–2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>–1</td>
</tr>
</tbody>
</table>

- Signed and unsigned integers have limits.
 - If you compute a number that is too big (positive), it wraps: \(6 + 4 = ? \quad 15U + 2U = ? \)
 - If you compute a number that is too small (negative), it wraps: \(-7 - 3 = ? \quad 0U - 2U = ?\)
 - Answers are only correct mod 2
- The CPU may be capable of “throwing an exception” for overflow on signed values.
 - It won’t for unsigned.
- But C and Java just cruise along silently when overflow occurs... Oops.

Values To Remember

- **Unsigned Values**
 - \(UMin = 0 \)
 - 000...0
 - \(UMax = 2^w - 1 \)
 - 111...1

Two’s Complement Values

- \(TMin = 2^{w-1} \)
 - 100...0
- \(Tmax = 2^{w-1} - 1 \)
 - 011...1
- Negative one
 - 111...1 0xF...F

Conversion Visualized

- **Two’s Complement → Unsigned**
 - Ordering Inversion
 - Negative → Big Positive

Signed vs. Unsigned in C

- **Constants**
 - By default are considered to be signed integers
 - Use “U” suffix to force unsigned:
 - \(0U, 4294967259U \)
Signed vs. Unsigned in C

- Casting
 - `int tx, ty;`
 - `unsigned ux, uy;`
- Explicit casting between signed & unsigned:
 - `tx = (int) ux;`
 - `uy = (unsigned) ty;`
- Implicit casting also occurs via assignments and function calls:
 - `tx = ux;`
 - `uy = ty;`
 - The gcc flag `-Wsign-conversion` produces warnings for implicit casts, but `-Wall` does not!
- How does casting between signed and unsigned work?
- What values are going to be produced?

Casting Surprises

- Expression Evaluation
 - If you mix unsigned and signed in a single expression, then
 `signed values are implicitly cast to unsigned.`
 - Including comparison operations `<, >, ==, <=, >=`
 - Examples for `W = 32`: `TMIN = -2,147,483,648` `TMAX = 2,147,483,647`

<table>
<thead>
<tr>
<th>Constant1</th>
<th>Constant2</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483648</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483648</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned)-1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>

Sign Extension

- What happens if you convert a 32-bit signed integer to a 64-bit signed integer?
Sign Extension

■ Task:
 ▪ Given w-bit signed integer x
 ▪ Convert it to w+k-bit integer with same value
■ Rule:
 ▪ Make k copies of sign bit:
 ▪ \(X' = x_{w-1}, \ldots, x_{w-1}, x_{w-2}, \ldots, x_0 \)

\[\begin{align*}
 \text{k copies of MSB} \\
 \hline
 X' & \cdots & \cdots & \cdots & \cdots & X \\
 \hline
 \end{align*} \]

Shift Operations

■ Left shift: \(x \ll y \)
 ▪ Shift bit vector \(x \) left by \(y \) positions
 ▪ Throw away extra bits on left
 ▪ Fill with 0s on right
■ Right shift: \(x \gg y \)
 ▪ Shift bit-vector \(x \) right by \(y \) positions
 ▪ Throw away extra bits on right
 ▪ Logical shift (for unsigned values)
 ▪ Fill with 0s on left
 ▪ Arithmetic shift (for signed values)
 ▪ Replicate most significant bit on left
 ▪ Maintains sign of \(x \)

The behavior of \(\gg \) in C depends on the compiler! It is arithmetic shift right in GCC. Java: \(>>> \) is logical shift right; \(\gg \) is arithmetic shift right.

Sign Extension Example

■ Converting from smaller to larger integer data type
■ C automatically performs sign extension. (Java too)

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>12345</td>
<td>00110000 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>12345</td>
<td>00 00 30 39 00000000 00000000 00110000 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-12345</td>
<td>11001111 11000111</td>
</tr>
<tr>
<td>iy</td>
<td>-12345</td>
<td>FF FF CF C7 11111111 11111111 11001111 11000111</td>
</tr>
</tbody>
</table>

Shift Operations

■ Left shift: \(x \ll y \)
 ▪ Shift bit vector \(x \) left by \(y \) positions
 ▪ Throw away extra bits on left
 ▪ Fill with 0s on right
■ Right shift: \(x \gg y \)
 ▪ Shift bit-vector \(x \) right by \(y \) positions
 ▪ Throw away extra bits on right
 ▪ Logical shift (for unsigned values)
 ▪ Fill with 0s on left
 ▪ Arithmetic shift (for signed values)
 ▪ Replicate most significant bit on left
 ▪ Maintains sign of \(x \)
 ▪ Why is this useful?

The behavior of \(\gg \) in C depends on the compiler! It is arithmetic shift right in GCC. Java: \(>>> \) is logical shift right; \(\gg \) is arithmetic shift right.
What happens when...

- x >> n?
- x << m?

What happens when...

- x >> n: divide by 2^n
- x << m: multiply by 2^m

faster than general multiple or divide operations

Using Shifts and Masks

- Extract the 2nd most significant byte of an integer?

| x | 01100001 01100010 01100011 01100100 |

Using Shifts and Masks

- Extract the 2nd most significant byte of an integer:
 - First shift, then mask: (x >> 16) & 0xFF

<table>
<thead>
<tr>
<th>x</th>
<th>01100001 01100010 01100011 01100100</th>
</tr>
</thead>
<tbody>
<tr>
<td>x >> 16</td>
<td>00000000 00000000 01100001 01100010</td>
</tr>
<tr>
<td>(x >> 16) & 0xFF</td>
<td>00000000 00000000 00000000 11111111</td>
</tr>
<tr>
<td>(x >> 16) & 0xFF</td>
<td>00000000 00000000 00000000 01100010</td>
</tr>
</tbody>
</table>

- Extract the sign bit of a signed integer?
Using Shifts and Masks

- Extract the 2nd most significant byte of an integer:
 - First shift, then mask: \(x >> 16 \) & 0xFF

 | x | 01100001 | 01100010 | 01100111 | 01101000 |
 | x >> 16 | 00000000 | 00000000 | 01100000 | 01100010 |
 | (x >> 16) & 0xFF | 00000000 | 00000000 | 00000000 | 11111111 |

- Extract the sign bit of a signed integer:
 - \((x >> 31) \& 1\) - need the "& 1" to clear out all other bits except LSB
- Conditionals as Boolean expressions (assuming \(x \) is 0 or 1)
 - if (x) a=y else a=z; which is the same as \(a = x ? y : z \);
 - Can be re-written (assuming arithmetic right shift) as:
 \(a = (x << 31) >> 31 \& y + ((x << 31) >> 31) \& z \);

Unsigned Multiplication in C

Operands: \(w \) bits

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|c}
\mu & & & & & & & & & & \mu \\
\hline
\ast & & & & & & & & & & \ast \\
\hline
\nu & & & & & & & & & & \nu \\
\end{array}
\]

True Product: \(2^w \) bits

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|c}
\mu \cdot \nu & & & & & & & & & & \mu \cdot \nu \\
\hline
\ast & & & & & & & & & & \ast \\
\hline
\text{Discard} \ w \ \text{bits}: \ w \ \text{bits}
\end{array}
\]

- Standard Multiplication Function
 - Ignores high order \(w \) bits
- Implements Modular Arithmetic
 \(\text{UMult}_w(\mu, \nu) = \mu \cdot \nu \mod 2^w \)

Multiplication

- What do you get when you multiply \(9 \times 9 \)?
- What about \(2^{30} \times 3 \)?
- \(2^{30} \times 5 \)
- \(-2^{31} \times -2^{31}\)?

Power-of-2 Multiply with Shift

- Operation
 - \(u << k \) gives \(u \cdot 2^k \)
 - Both signed and unsigned

\mu	\k	\mu \cdot 2^k
0\ldots0	010 \ldots0	0\ldots0
0\ldots0	0\ldots0	0\ldots0
\ast \cdot 2^k		
\text{Discard} \ k \ \text{bits}: \ k \ \text{bits}		
\text{UMult}_w(\mu, 2^k)		
\text{TMult}_w(\mu, 2^k)		
0\ldots0	0\ldots0	0\ldots0

- Examples
 - \(u << 3 \) \(\Rightarrow u \cdot 8 \)
 - \(u << 5 - u << 3 \) \(\Rightarrow u \cdot 24 \)
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically
Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void* user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, MSIZE);
 printf("%s\n", mybuf);
}

Malicious Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void* user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, -MSIZE);
 ...
}

Floats! Later in the quarter...

- How do we represent fractional numbers?
- If you’re curious now, read the book, check out the videos.
- We’ll return to this topic later if we have time.