
CSE 351  
Section 9 

3/1/12 



Agenda 

• Caching 

 

 



University of Washington 

General Cache Mechanics 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

8 9 14 3 Cache 

Memory 
Larger, slower, cheaper memory 
viewed as partitioned into “blocks” 

Data is copied in block-sized 
transfer units 

Smaller, faster, more expensive 
memory caches a  subset of 
the blocks 

3 



University of Washington 

General Cache Concepts: Hit 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

8 9 14 3 Cache 

Memory 

Request: 14 

4 



University of Washington 

General Cache Concepts: Hit 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

8 9 14 3 Cache 

Memory 

Data in block b is needed Request: 14 

5 



University of Washington 

General Cache Concepts: Hit 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

8 9 14 3 Cache 

Memory 

Data in block b is needed Request: 14 

Block b is in cache: 
Hit! 

6 



University of Washington 

General Cache Concepts: Miss 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

8 9 14 3 Cache 

Memory 

Data in block b is needed Request: 12 

7 



University of Washington 

General Cache Concepts: Miss 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

8 9 14 3 Cache 

Memory 

Data in block b is needed Request: 12 

Block b is not in cache: 
Miss! 

8 



University of Washington 

General Cache Concepts: Miss 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

8 9 14 3 Cache 

Memory 

Data in block b is needed Request: 12 

Block b is not in cache: 
Miss! 

Block b is fetched from 
memory 

Request: 12 

9 



University of Washington 

General Cache Concepts: Miss 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

8 9 14 3 Cache 

Memory 

Data in block b is needed Request: 12 

Block b is not in cache: 
Miss! 

Block b is fetched from 
memory 

Request: 12 

Block b is stored in cache 
• Placement policy: 

determines where b goes 
•Replacement policy: 

determines which block 
gets evicted (victim) 

10 

12 



University of Washington 

Cache Performance Metrics 
 Miss Rate 

 Fraction of memory references not found in cache (misses / accesses) 
= 1 – hit rate 

 Typical numbers (in percentages): 

 3-10% for L1 

 can be quite small (e.g., < 1%) for L2, depending on size, etc. 

 Hit Time 

 Time to deliver a line in the cache to the processor 

 includes time to determine whether the line is in the cache 

 Typical numbers: 

 1-2 clock cycle for L1 

 5-20 clock cycles for L2 

 30-50 clock cycles for L3 

 Miss Penalty 

 Additional time required because of a miss 

 typically 100-400 cycles for main memory (trend: increasing!) 

11 



University of Washington 

Lets think about those numbers 

 Huge difference between a hit and a miss 
 Could be 100x, if just L1 and main memory 

 

 Would you believe 99% hits is twice as good as 97%? 
 Consider:  

cache hit time of 1 cycle 
miss penalty of 100 cycles 

 

 Average access time: 

  97% hits:  1 cycle + 0.03 * 100 cycles = 4 cycles 

  99% hits:  1 cycle + 0.01 * 100 cycles = 2 cycles 

 

 This is why “miss rate” is used instead of “hit rate” 

12 



University of Washington 

Types of Cache Misses 

 Cold (compulsory) miss 
 Occurs on first access to a block 

 Conflict miss 
 Most hardware caches limit blocks to a small subset (sometimes just one) 

of the available cache slots 

 if one (e.g., block i must be placed in slot (i mod size)), direct-mapped 

 if more than one, n-way set-associative (where n is a power of 2) 

 Conflict misses occur when the cache is large enough, but multiple data 
objects all map to the same slot 

 e.g., referencing blocks 0, 8, 0, 8, ... would miss every time 

 Capacity miss 
 Occurs when the set of active cache blocks (the working set)  

is larger than the cache (just won’t fit) 

 

13 



University of Washington 

Why Caches Work 

 Locality: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently 

 

 Temporal locality:   
 Recently referenced items are likely  

to be referenced again in the near future 

 Spatial locality:   
 Items with nearby addresses tend  

to be referenced close together in time 

 

 How do caches take advantage of this? 

 

 

 

block 

block 

14 



University of Washington 

Example: Locality? 

 Data: 
 Temporal: sum referenced in each iteration 

 Spatial: array a[] accessed in stride-1 pattern 

 Instructions: 
 Temporal: cycle through loop repeatedly 

 Spatial: reference instructions in sequence 

 

 Being able to assess the locality of code is a crucial skill 
for a programmer 
 

sum = 0; 

for (i = 0; i < n; i++) 

  sum += a[i]; 

return sum; 

15 



University of Washington 

General Cache Organization (S, E, B) 

E = 2e lines per set 

S = 2s sets 

set 

line 

0 1 2 B-1 tag v 

valid bit 
B = 2b bytes data block per cache line (the data) 

cache size: 
S x E x B  data bytes 

16 



University of Washington 

Cache Read 

E = 2e lines per set 

S = 2s sets 

0 1 2 B-1 tag v 

valid bit 
B = 2b bytes data block per cache line (the data) 

t bits s bits b bits 

Address of word: 

tag set 
index 

block 
offset 

data begins at this offset 

• Locate set 
• Check if any line in set 

has matching tag 
• Yes + line valid: hit 
• Locate data starting 

at offset 

17 



University of Washington 

Example: Direct-Mapped Cache (E = 1) 

S = 2s sets 

Direct-mapped: One line per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of int: 

0 1 2 7 tag v 3 6 5 4 

0 1 2 7 tag v 3 6 5 4 

0 1 2 7 tag v 3 6 5 4 

0 1 2 7 tag v 3 6 5 4 

find set 

18 



University of Washington 

Example: Direct-Mapped Cache (E = 1) 
Direct-mapped: One line per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of int: 

0 1 2 7 tag v 3 6 5 4 

match: assume yes = hit valid?   + 

block offset 

tag 

19 



University of Washington 

Example: Direct-Mapped Cache (E = 1) 
Direct-mapped: One line per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of int: 

0 1 2 7 tag v 3 6 5 4 

match: assume yes = hit valid?   + 

int (4 Bytes) is here 

block offset 

No match: old line is evicted and replaced 

20 



University of Washington 

Example (for E =1) 
int sum_array_rows(double a[16][16]) 

{ 

    int i, j; 

    double sum = 0; 

 

    for (i = 0; i < 16; i++) 

        for (j = 0; j < 16; j++) 

            sum += a[i][j]; 

    return sum; 

} 

32 B = 4 doubles 

Assume: cold (empty) cache 
3 bits for set, 5 bits for byte 
         aa.…aaxxx  xyy  yy000 

int sum_array_cols(double a[16][16]) 

{ 

    int i, j; 

    double sum = 0; 

 

    for (j = 0; j < 16; j++) 

        for (i = 0; i < 16; i++) 

            sum += a[i][j]; 

    return sum; 

} 

Assume sum, i, j in registers 
Address of an aligned element 
of a:  aa.…aaxxxxyyyy000 

21 

0,0 0,1 0,2 0,3 

0,4 0,5 0,6 0,7 

0,8 0,9 0,a 0,b 

0,c 0,d 0,e 0,f 

1,0 1,1 1,2 1,3 

1,4 1,5 1,6 1,7 

1,8 1,9 1,a 1,b 

1,c 1,d 1,e 1,f 

32 B = 4 doubles 

0,0 0,1 0,2 0,3 

1,0 1,1 1,2 1,3 

2,0 2,1 2,2 2,3 

3,0 3,1 3,2 3,3 

4,0 4,1 4,2 4,3 



University of Washington 

Example (for E = 1) 
float dotprod(float x[8], float y[8]) 

{ 

    float sum = 0; 

    int i; 

 

    for (i = 0; i < 8; i++) 

sum += x[i]*y[i]; 

    return sum; 

} 

22 

x[0] x[1] x[2] x[3] y[0] y[1] y[2] y[3] x[0] x[1] x[2] x[3] y[0] y[1] y[2] y[3] x[0] x[1] x[2] x[3] 

if x and y have aligned  
starting addresses,  

e.g., &x[0] = 0, &y[0] = 128 

if x and y have unaligned  
starting addresses,  

e.g., &x[0] = 0, &y[0] = 144 

x[0] x[1] x[2] x[3] 

y[0] y[1] y[2] y[3] 

x[5] x[6] x[7] x[8] 

y[5] y[6] y[7] y[8] 



University of Washington 

E-way Set-Associative Cache (Here: E = 2) 
E = 2: Two lines per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of short int: 

find set 

23 

 
0 

 
1 

 
2 

 
7 

tag 
 
v 

 
3 

 
6 

 
5 

 
4 

 
0 

 
1 

 
2 

 
7 

tag 
 
v 

 
3 

 
6 

 
5 

 
4 

 
0 

 
1 

 
2 

 
7 

tag 
 
v 

 
3 

 
6 

 
5 

 
4 

 
0 

 
1 

 
2 

 
7 

tag 
 
v 

 
3 

 
6 

 
5 

 
4 

 
0 

 
1 

 
2 

 
7 

tag 
 
v 

 
3 

 
6 

 
5 

 
4 

 
0 

 
1 

 
2 

 
7 

tag 
 
v 

 
3 

 
6 

 
5 

 
4 

 
0 

 
1 

 
2 

 
7 

tag 
 
v 

 
3 

 
6 

 
5 

 
4 

 
0 

 
1 

 
2 

 
7 

tag 
 
v 

 
3 

 
6 

 
5 

 
4 



University of Washington 

 
0 

 
1 

 
2 

 
7 

tag 
 
v 

 
3 

 
6 

 
5 

 
4 

 
0 

 
1 

 
2 

 
7 

tag 
 
v 

 
3 

 
6 

 
5 

 
4 

E-way Set-Associative Cache (Here: E = 2) 
E = 2: Two lines per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of short int: 

compare both 

valid?  +  match: yes = hit 

block offset 

tag 

24 



University of Washington 

 
0 

 
1 

 
2 

 
7 

tag 
 
v 

 
3 

 
6 

 
5 

 
4 

 
0 

 
1 

 
2 

 
7 

tag 
 
v 

 
3 

 
6 

 
5 

 
4 

E-way Set-Associative Cache (Here: E = 2) 
E = 2: Two lines per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of short int: 

match both 

valid?  +  match: yes = hit 

block offset 

short int (2 Bytes) is here 

No match:  
• One line in set is selected for eviction and replacement 
• Replacement policies: random, least recently used (LRU), … 

25 



University of Washington 

Example (for E = 2) 
float dotprod(float x[8], float y[8]) 

{ 

    float sum = 0; 

    int i; 

 

    for (i = 0; i < 8; i++) 

sum += x[i]*y[i]; 

    return sum; 

} 

26 

x[0] x[1] x[2] x[3] y[0] y[1] y[2] y[3] if x and y have aligned  
starting addresses,  

e.g., &x[0] = 0, &y[0] = 128 
still can fit both 

because 2 lines in each set 

x[4] x[5] x[6] x[7] y[4] y[5] y[6] y[7] 



University of Washington 

Fully Set-Associative Caches (S = 1) 

 All lines in one single set, S = 1 
 E = C / B, where C is total cache size 

 S = 1 = ( C / B ) / E 
 

 Direct-mapped caches have E = 1 
 S = ( C / B ) / E  = C / B 

 Tags are more expensive in associative caches 
 Fully-associative cache, C / B tag comparators 

 Direct-mapped cache, 1 tag comparator 

 In general, E-way set-associative caches, E tag comparators 

 Tag size, assuming m address bits (m = 32 for IA32) 
 m – log2S – log2B 

 

27 



University of Washington 

What about writes? 

 Multiple copies of data exist: 
 L1, L2, L3, Main Memory, Disk 

 What to do on a write-hit? 
 Write-through (write immediately to memory) 

 Write-back (defer write to memory until replacement of line) 

 Need a dirty bit (line different from memory or not) 

 What to do on a write-miss? 
 Write-allocate (load into cache, update line in cache) 

 Good if more writes to the location follow 

 No-write-allocate (writes immediately to memory) 

 Typical 
 Write-through + No-write-allocate 

 Write-back + Write-allocate 

 28 


