
CSE 351
Section 8

2/22/12

Agenda

• Malloc/Free

Process Memory Image

kernel virtual memory

run-time heap

program text (.text)

initialized data (.data)

uninitialized data (.bss)

stack

0

%rsp

memory protected
from user code

3

What is the heap for?
How do we use it?

Memory Allocation

• Dynamic memory allocation
– Size of data structures may only be known at run time

– Need to allocate space on the heap

– Need to de-allocate (free) unused memory so it can be re-allocated

• Implementation --- “Memory allocator”

4

Process Memory Image

kernel virtual memory

run-time heap (via malloc)

program text (.text)

initialized data (.data)

uninitialized data (.bss)

stack

0

%rsp

memory protected
from user code

the “brk” ptr

Allocators request
additional heap memory
from the kernel using the
sbrk() function:

error = sbrk(amt_more)

5

Dynamic Memory Allocation
• Memory allocator?

– VM hardware and kernel allocate pages

– Application objects are typically smaller

– Allocator manages objects within pages

• Explicit vs. Implicit Memory Allocator

– Explicit: application allocates and frees space
• In C: malloc() and free()

– Implicit: application allocates, but does not free space
• In Java, ML, Lisp: garbage collection

• Allocation

– A memory allocator doles out memory blocks to application

– A “block” is a contiguous range of bytes of the appropriate size

• What is appropriate size?

Application

Dynamic Memory Allocator

Heap Memory

6

Malloc Package
• #include <stdlib.h>

• void *malloc(size_t size)

– Successful:
• Returns a pointer to a memory block of at least size bytes

(typically) aligned to 8-byte boundary
• If size == 0, returns NULL

– Unsuccessful: returns NULL (0) and sets errno (a global variable)

• void free(void *p)

– Returns the block pointed at by p to the pool of available memory
– p must come from a previous call to malloc or realloc

• void *realloc(void *p, size_t size)

– Changes size of block p and returns pointer to new block
– Contents of new block unchanged up to min of old and new size
– Old block has been free'd (logically, if new != old)

7

Malloc Example
void foo(int n, int m) {

 int i, *p;

 /* allocate a block of n ints */

 p = (int *)malloc(n * sizeof(int));

 if (p == NULL) {

 perror("malloc");

 exit(0);

 }

 for (i=0; i<n; i++) p[i] = i;

 /* add m bytes to end of p block */

 if ((p = (int *)realloc(p, (n+m) * sizeof(int))) == NULL) {

 perror("realloc");

 exit(0);

 }

 for (i=n; i < n+m; i++) p[i] = i;

 /* print new array */

 for (i=0; i<n+m; i++)

 printf("%d\n", p[i]);

 free(p); /* return p to available memory pool */

}

8

Why?

Allocation Example

p1 = malloc(4)

p2 = malloc(5)

9

Allocation Example

p1 = malloc(4)

p2 = malloc(5)

10

Allocation Example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

11

Allocation Example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

12

Allocation Example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

13

Allocation Example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

14

Allocation Example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

15

Allocation Example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

16

Constraints
• Applications

– Can issue arbitrary sequence of malloc() and free() requests

– free() requests must be to a malloc()’d block

• Allocators

– Can’t control number or size of allocated blocks

– Must respond immediately to malloc() requests

• i.e., can’t reorder or buffer requests

– Must allocate blocks from free memory

• i.e., can only place allocated blocks in free memory

– Must align blocks so they satisfy all alignment requirements

• 8 byte alignment for GNU malloc (libc malloc) on Linux boxes

– Can manipulate and modify only free memory

– Can’t move the allocated blocks once they are malloc()’d

• i.e., compaction is not allowed. Why not?

17

Fragmentation

• Poor memory utilization caused by fragmentation
– internal fragmentation

– external fragmentation

• Terminology
– Block

• The chunk of memory malloc reserves for a given malloc call

– Payload
• malloc(p)results in a block with a payload of p bytes

18

Internal Fragmentation
• For a given block, internal fragmentation occurs if payload is smaller than

block size

• Caused by

– overhead of maintaining heap data structures (inside block, outside payload)

– padding for alignment purposes

– explicit policy decisions
(e.g., to return a big block to satisfy a small request)

• Depends only on the pattern of previous requests

– Thus, easy to measure

payload
Internal
fragmentation

block

Internal
fragmentation

19

External Fragmentation

• Occurs when there is enough aggregate heap memory, but no
single free block is large enough

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

20

External Fragmentation

• Occurs when there is enough aggregate heap memory, but no
single free block is large enough

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6)

21

External Fragmentation

• Occurs when there is enough aggregate heap memory, but no
single free block is large enough

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)

22

External Fragmentation

• Occurs when there is enough aggregate heap memory, but no
single free block is large enough

• Depends on the pattern of future requests
– Thus, difficult to measure

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)

23

Implementation Issues

• How to know how much memory is being free()’d when it is given only
a pointer (and no length)?

• How to keep track of the free blocks?

• What to do with extra space when allocating a block that is smaller than
the free block it is placed in?

• How to pick a block to use for allocation—many might fit?

• How to reinsert a freed block into the heap?

24

Knowing How Much to Free

• Standard method

– Keep the length of a block in the word preceding the block.
• This word is often called the header field or header

– Requires an extra word for every allocated block

free(p0)

p0 = malloc(4)

p0

block size data

5

25

Keeping Track of Free Blocks
• Method 1: Implicit list using length—links all blocks

• Method 2: Explicit list among the free blocks using pointers

• Method 3: Segregated free list

– Different free lists for different size classes

• Method 4: Blocks sorted by size
– Can use a balanced binary tree (e.g. red-black tree) with pointers

within each free block, and the length used as a key

5 4 2 6

5 4 2 6

26

