CSE 351
 Section 7

2/16/12

Agenda

- Midterm Post-Review

Question 1

Write the assembly function for char * strchr(char *s, char c);
Locates the first occurrence of character c in string s . Returns a pointer to that character, or null pointer if not found. Function should be callable from a module other than the current source file.

```
.text
.globl strchr #Make strchr callable elsewhere
strchr:
    pushq %rbp #Save old frame pointer
    movq %rsp,%rbp #Set up new frame pointer
loop:
    cmpb (%rdi),%sil #Check if byte where %rdi points == byte in %sil
    je end
    cmpb $0,(%rdi)
    je endnull
    addq $1, %rdi #Increment pointer by 1 to look at next character
endnull:
    movq $0,%rdi
end:
    movq %rdi,%rax #Put resulting pointer in %rax for return
    popq %rbp
    ret
```


Question 2

Write the assembly function for the following C code:
static int fib(int $x)\{$
if $(x<=1)$

$$
\text { return } x ;
$$

return fib($x-1$) $+\mathrm{fib}(x-2)$;
\}
.text
fib:

```
push %rbp #Save old frame pointer
    mov %rsp,%rbp #Set up new frame pointer
    sub $16,%rsp #Create stack space
    mov %edi,%eax
    cmp $1,%edi
    jle.end
    mov %edi, (%rsp)
    sub $1, %edi
    call fib
    mov %eax, 4(%rsp)
    mov (%rsp),%edi
    sub $2,%edi
    call fib
    add 4(%rsp),%eax
    add $16, %rsp
    pop %rbp
```

```
#Move input argument to eax
```

\#Move input argument to eax
\#Check if input arg is 1 or less
\#Check if input arg is 1 or less
\#If so, end (returning 1 or 0 in eax)
\#If so, end (returning 1 or 0 in eax)
\#Move argument to top of stack
\#Move argument to top of stack
\#Subtract 1 from argument
\#Subtract 1 from argument
\#Recurse "fib(x-1)"
\#Recurse "fib(x-1)"
\#When we've returned, move returned value to 2 2 nd stack space
\#When we've returned, move returned value to 2 2 nd stack space
\#Move value from top of stack to the input register
\#Move value from top of stack to the input register
\#Subtract 2 from input register
\#Subtract 2 from input register
\#Recurse "fib(x-2)"
\#Recurse "fib(x-2)"
\#Add fib(x-1) to fib(x-2)
\#Add fib(x-1) to fib(x-2)
\#Recover stack space
\#Recover stack space
\#Restore old frame pointer

```
#Restore old frame pointer
```

.end:
ret

Question 3

- 16-bit signed binary value for 3 0000000000000011
- 16-bit signed binary value for 14 0000000000001110
- 16-bit signed binary value for -14 1111111111110010
- 16-bit signed binary value for $3-14=-11$ 1111111111110101

Question 4

a) Assume s is a pointer with the value 0×1000. s points to the string "Hello world!". What is the address of the letter 'w'?

- 0x1006
b) What is a callee saved register?
- The function being called must save the contents of this register if it wants to use it and restore its value before returning from the function.
c) What is the 32-bit floating point representation for -3.25 ?
$-3.25_{10}=11.01_{2}$
$-\quad(-1)^{1 *} 1.101_{2}{ }^{*} 2^{1}$
$-\quad S=1$, frac $=10100 \ldots{ }_{2}, \exp =1+$ Bias $=1+127=128=10000000_{2}$
- 11000000010100000000000000000000

Question 4

d) (T/F) In 64-bit x86, the first 2 integer arguments are passed in registers, the remainder on the stack.

- False, the first six are passed in registers.
e) ($\mathrm{Big} / \mathrm{Littl} \mathrm{e}$) endian: The number 0xdeadbeef is stored in memory as byte 0: Oxef, byte 1: Oxbe, byte 2: 0xad, byte 3: 0xde

- Little Endian

f) (T/F) The return value from this function is always 1. int foo() \{ int $x=$ random(); int $y=$ random(); unsigned $u x=x$; unsigned uy = y; return ux + uy $==x+y$; $\}$

- True. x and y get cast as unsigned in the == comparison since $u x$ and uy are unsigned.
g) The smallest signed 16 -bit integer is?
$-\quad-32768_{10}=1000000000000000_{2}=0 \times 8000$

