## CSE 351 <br> Section 4

1/26/12

## Agenda

- Review integer representations
- How they show up in C
- Shifting / Masks
- Sign Extension
- Floating Point - more detail


## How can we represent negative numbers?

- Sign-and-Magnitude
- MSB denotes sign of number, rest of bits denote magnitude
- E.g. $1001=-1$
- Two zeros (0000 and 1000) and you need different hardware for + and -
- One's Complement (a.k.a. Bitwise Complement)
- Flip all bits to get the negative of a number
- E.g. $1110=-1$
- Two zeros (0000 and 11111)
- Two's Complement
- To get the negative of a number, flip all bits and add 1
- E.g. 1111 = -1
- Only one zero, can use same hardware for + and -, as well as for signed/unsigned


## Two's complement

Add Invert and add Invert and add

| 4 | 0100 | 4 | 0100 | -4 | 1100 |
| ---: | ---: | :---: | :---: | :---: | ---: |
| +3 | +0011 | -3 | +1101 | +3 | +0011 |
| $=7$ | $=0111$ | $=1$ | 10001 | -1 | 1111 |
|  |  | drop carry | $=0001$ |  |  |



## Two's Complement

- Why does it work?
- The one's complement of a b-bit positive number y is $\left(2^{b}-1\right)-y$
- E.g. $-3=1100_{2}$ in one's complement, which is 12 if it were unsigned

$$
\left(2^{4}-1\right)-3=12
$$

- Two's Complement adds 1 to the one's
complement, thus $-y$ is $2^{b}-y$ (or $\left.-x==\left({ }^{\sim} x+1\right)\right)$
- $-y$ and $2^{b}-y$ are equal mod $2^{b}$
(have the same remainder when divided by $2^{\text {b }}$ )
- Ignoring carries is equivalent to doing arithmetic $\bmod 2^{b}$


## Mapping Signed -> Unsigned

| Bits |
| :---: |
| 0000 |
| 0001 |
| 0010 |
| 0011 |
| 0100 |
| 0101 |
| 0110 |
| 0111 |
| 1000 |
| 1001 |
| 1010 |
| 1011 |
| 1100 |
| 1101 |
| 1110 |
| 1111 |


| Signed |
| :---: |
| 0 |
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
| 7 |
| -8 |
| -7 |
| -6 |
| -5 |
| -4 |
| -3 |
| -2 |
| -1 |



## Signed vs. Unsigned in C

- Constants
- Default = signed integers
- Unsigned if they have " $U$ " as a suffix
- E.g. OU, 1234567U
- Size can by typed too
- E.g. 1234567890123456 ULL
- Casting
int tx, ty;
unsigned ux, uy;
- Explicit casting

```
    tx = (int) ux;
    uy = (unsigned) ty;
```

- Implicit casting (careful!)

$$
\begin{aligned}
& t x=u x ; \\
& u y=t y ;
\end{aligned}
$$

## Casting Surprises

- If you mix unsigned and signed in a single expression, signed values are implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=

Examples for 32-bit: TMIN $=-2,147,483,648$ TMAX $=2,147,483,647$

| Constant 1 | Constant 2 | Evaluated As | Relation between <br> C1 and C2 |
| :--- | :--- | :--- | :--- |
| 0 | OU | Unsigned | $==$ |
| -1 | 0 | Signed | $<$ |
| -1 | 0 U | Unsigned | $>$ |
| 2147483647 | -2147483648 | Signed | $>$ |
| 2147483647 U | -2147483648 | Unsigned | $<$ |
| -1 | -2 | Signed | $>$ |
| 0 U-1 | -2 | Unsigned | $>$ |
| 2147483647 | 2147483648 U | Unsigned | $<$ |
| 2147483647 | (int) 2147483648 U | Signed | $>$ |

## Shift Operations

- Left Shift: $x \ll y$
- Shift bit-vector $x$ left by y positions
- Throw away extra bits on left, fill with 0's on right
- Each shift left by 1 bit is the same as multiplying by 2
- So $x \ll y$ is the same as $x$ * $2^{y}$
- Right Shift: x >> y
- Shift bit-vector $x$ right by y positions
- Throw away extra bits on right
- Logical shift (for unsigned): Fill with 0's on left
- Arithmetic shift (for signed): Fill with whatever was MSB on left Maintain the sign of $x$

| Argument $x$ | 01100010 |
| :---: | :---: |
| $\ll 3$ | 00010000 |
| Logical $\gg 2$ | 00011000 |
| Arithmetic $\gg 2$ | 00011000 |


| Argument x | 10100010 |
| :---: | :---: |
| $\ll 3$ | 00010000 |
| Logical $\gg 2$ | 00101000 |
| Arithmetic $\gg 2$ | 11101000 |

- Each shift right by 1 is the same as dividing by 2


## Masking

- What if you need to extract the $2^{\text {nd }}$ most significant byte of an integer (i.e. bits 16 through 23)?
- First shift: x >> 16
- Then mask: (x >> 16) \& 0xff

| $x$ | 01100001011000100110001101100100 |
| :---: | :---: |
| $x \gg 16$ | 00000000000000000110000101100010 |
| $(x \gg 16) \& 0 x F F$ | 00000000000000000000000011111111 |
|  | 00000000000000000000000001100010 |

- Extracting the sign bit
- ( $x \gg 31$ ) \& 1
- Need the "\& 1" to clear out all other bits except the LSB


## Sign Extension

- Given a w-bit signed integer $x$, convert to a (w+k)-bit signed integer with the same value
- Rule: Make $k$ copies of sign bit

$$
-\mathrm{X} 2=\mathrm{X}_{\mathrm{w}-1, \ldots, \mathrm{X}_{\mathrm{w}-1}, \mathrm{X}_{\mathrm{w}-1}, \mathrm{X}_{\mathrm{w}-2,2}, \ldots, \mathrm{X}_{0}}^{\substack{\text { copies of MSB }}}
$$

## Sign Extension Example

```
short int x = 12345;
int ix = (int) x;
short int y = -12345;
int iy = (int) y;
```

| - | Decimal | Hex | Binary |
| :---: | :---: | :---: | :---: |
| x | 12345 | $30 \quad 39$ | 0011000001101101 |
| ix | 12345 | $\begin{array}{lllll}00 & 00 & 30 & 39\end{array}$ | 00000000000000000011000001101101 |
| y | -12345 | CF C7 | 1100111111000111 |
| id | -12345 | FF FF CF C7 | 11111111111111111100111111000111 |

C automatically performs sign extension

## Fractional Binary Numbers (Not Floating Point!)



Bits to right of "binary point" represent fractional powers of 2

## Fractional Binary Numbers Examples

- What are these numbers in binary?
- 5 and $3 / 4 \quad 101.11_{2}$
- 2 and $7 / 8 \quad 10.111_{2}$
- 63/64 0.111111 2
- Observations
- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0


## Representable Numbers

- Limitation
- Can only exactly represent numbers of the form $\mathrm{x} / 2^{\mathrm{k}}$
- Other rational numbers have repeating bit representations
- Value Representation

1/3 0.0101010101[01]...2
$1 / 5 \quad 0.001100110011[0011] \ldots 2$
$1 / 100.0001100110011[0011] \ldots 2$

## Fixed Point Representation

- Pick where you want to put the decimal point
- The position of the binary point affects the range and precision
- Range: difference between the largest and smallest representable numbers
- Precision: smallest possible difference between any two numbers
- Pro
- Simple: The same hardware that does integer arithmetic can do fixed point arithmetic
- In fact, the programmer can use ints with an implicit fixed point
- E.g. int balance; // number of pennies in the account
- ints are just fixed point numbers with the binary point to the right of the LSB
- Con
- There is no good way to pick where the fixed point should be
- Sometimes you need range, sometimes you need precision
- More range $=$ less precision and vice versa


## Floating Point Representation

$$
(-1)^{S} * M * 2^{E}
$$

- Sign bit $S$ determines whether number is negative or positive
- Mantissa M (aka Significand aka "Frac") normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
- MSB is sign bit S
- frac field encodes $M$ (but is not equal to $M$ )
$-\exp$ field encodes $E$ (but is not equal to $E$ )
$\square$


## Precisions

- Single precision (float): 32 bits

| $s$ lexp | frac |  |
| :--- | :--- | :--- | :--- |
| 188 | 23 |  |

- Double Precision (double): 64 bits

| $s$ | exp | frac |  |
| :--- | :--- | :--- | :--- |
| 1 | 11 | 52 |  |

- Extended Precision: 80 bits (Intel only)



## Normalization, Bias and Special Values

- "Normalized" means mantissa has form 1.xxxx
$-0.011 * 2^{5}$ and $1.1 * 2^{3}$ represent the same number, but the latter makes better use of available bits
- Since we know the mantissa starts with a 1, don't bother to store it
- Therefore, when the mantissa is 1.xxxxx, M (i.e. frac) contains xxxxx
- The exponent field does not contain the exponent of the number, but the offset from a bias
- exp = E + Bias
- Bias $=2^{|\exp |-1}-1$ where $|\exp |=$ size of exp field
- (e.g. 127 is the bias for an 8 bit exp)
- Special Values
- The float value 00.... 0 represents zero
- Exp $=11 \ldots . .1$ and Mantissa $=00 . . .0$ represents infinity
- E.g. 10.0 / 0.0
- Exp $=11 . . .1$ and Mantissa != 00... 0 represents NaN
- E.g. 0 * Infinity


## Floating Point Example

| s | $\exp (8)$ | frac (23) |
| :--- | :--- | :--- |

- How is float 12345.0 represented?
- Value

$$
\begin{gathered}
12345.0_{10}=11000000111001_{2} \\
=1.1000000111001_{2} * 2^{13}
\end{gathered}
$$

## Floating Point Example



- How is float 12345.0 represented?
- Value

$$
\begin{gathered}
12345.0_{10}=11000000111001_{2} \\
=1.1000000111001_{2} * 2^{13}
\end{gathered}
$$

- Mantissa

```
M = 1.1000000111001 
frac = 100000011100100000000002 (Need to extend to fill all 23
bits)
```


## Floating Point Example

 s|exp (8) frac (23)- How is float 12345.0 represented?
- Value

$$
\begin{gathered}
12345.0_{10}=11000000111001_{2} \\
=1.1000000111001_{2} * 2^{13}
\end{gathered}
$$

- Mantissa

```
M = 1.1000000111001 2
frac = 100000011100100000000002 (Need to extend to fill all 23
bits)
```

- Exponent

$$
\begin{aligned}
& \mathrm{E}=13 \\
& \text { Bias }=2^{7}-1=127 \\
& \exp =140_{10}=10001100_{2}
\end{aligned}
$$

## Floating Point Operations

- Basic Idea
- First compute exact result
- Make it fit into desired precision
- Possibly overflow if exponent is too large
- Possibly round to fit into frac
- $\mathbf{x} \boldsymbol{t}_{\mathrm{f}} \mathrm{y}=\operatorname{Round}(\mathrm{x}+\mathrm{y})$
- $x *_{f} y=\operatorname{Round}(x * y)$


## Floating Point Multiplication

$$
(-1)^{\mathrm{S}_{1}} \mathrm{M}_{1} 2^{\mathrm{E}_{1}} *(-1)^{\mathrm{S}_{2}} \mathrm{M}_{2} 2^{\mathrm{E}_{2}}
$$

- Exact Result
- Sign $=S_{1} \wedge \mathrm{~S}_{2}$
- Mantissa: $\mathrm{M}_{1}{ }^{*} \mathrm{M}_{2}$
- Exponent: $\mathrm{E}_{1}+\mathrm{E}_{2}$
- Fixing
- If $M \geq 2, M=M \gg 1, E=E+1$
- If $E$ is out of range, overflow
- Round M to fit frac precision


## Floating Point Addition

$$
(-1)^{S_{1}} M_{1} 2^{E_{1}}+(-1)^{S_{2}} M_{2} 2^{E_{2}}
$$


-Exact Result
$(-1)^{\text {s1 }}$ M1

- Sign S, Mantissa M:
- Shift sign and mantissa of

$(-1)^{s 2} \mathrm{M} 2$
first value left by the difference of the exponents. This makes
exponents equal, so you can add the signed mantissas.
-Exponent E: $\mathrm{E}_{1}$
- Fixing
-If $\mathrm{M} \geq 2, \mathrm{M}=\mathrm{M} \gg 1, \mathrm{E}=\mathrm{E}+1$
-If $M<1, M=M \ll k, E=E-k$
- Overflow if $E$ is out of range
-Round M to fit frac precision


## Rounding Errors

- Since we round on every operation, the operations are not really associate or distributive

$$
\begin{aligned}
& \text { - Let } a=1.52342, b=6.2342342, c=2.2523555 \\
& \cdot(a+b)+c=10.010009700000001 \\
& a+(b+c)=10.010009699999999 \\
& \cdot a *(b+c)=12.928640480774000 \\
& \\
& a * b+a * c=12.928640480774002
\end{aligned}
$$

## Floating Point Values and the Programmer

```
#include <stdio.h>
int main(int argc, char* argv[]) {
    float f1 = 1.0;
    float f2 = 0.0;
    int i;
    for ( i=0; i<10; i++ ) {
        f2 += 1.0/10.0;
    }
    printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
    printf("f1 == f2? %s\n", f1 == f2 ? "yes" : "no");
    printf("f1 = %10.8f\n", f1);
    printf("f2 = %10.8f\n\n", f2);
    f1 = 1E30;
    f2 = 1E-30;
    float f3 = f1 + f2;
    printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );
    return 0;
}
```


## Floating Point Values and the Programmer

```
#include <stdio.h>
int main(int argc, char* argv[]) {
    float f1 = 1.0;
    float f2 = 0.0;
    int i;
    for ( i=0; i<10; i++ ) {
        f2 += 1.0/10.0;
    }
    printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
    printf("f1 == f2? %s\n", f1 == f2 ? "yes" : "no");
    printf("f1 = %10.8f\n", f1);
    printf("f2 = %10.8f\n\n", f2);
    f1 = 1E30;
    f2 = 1E-30;
    float f3 = f1 + f2;
    printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );
    return 0;
}
```


## Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
- Can get overflow/underflow, just like ints
- Some "simple fractions" have no exact representation (e.g. 0.1)
- Can also lose precision, unlike ints
- "Every operation gets a slightly wrong result"
- Mathematically equivalent ways of writing an expression may compute different results
- NEVER test floating point values for equality!

