
CSE 351
Section 4

1/26/12

Agenda

• Review integer representations
– How they show up in C

• Shifting / Masks
• Sign Extension
• Floating Point – more detail

How can we represent negative
numbers?

• Sign-and-Magnitude
– MSB denotes sign of number, rest of bits denote magnitude
– E.g. 1001 = -1
– Two zeros (0000 and 1000) and you need different hardware for +

and –
• One’s Complement (a.k.a. Bitwise Complement)

– Flip all bits to get the negative of a number
– E.g. 1110 = -1
– Two zeros (0000 and 11111)

• Two’s Complement
– To get the negative of a number, flip all bits and add 1
– E.g. 1111 = -1
– Only one zero, can use same hardware for + and -, as well as for

signed/unsigned

Two’s complement

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

Two’s Complement

• Why does it work?
– The one’s complement of a b-bit positive number y

is (2b – 1) – y
• E.g. -3 = 11002 in one’s complement, which is 12 if it

were unsigned
(24 – 1) – 3 = 12

– Two’s Complement adds 1 to the one’s
complement, thus -y is 2b – y (or -x == (~x + 1))

• –y and 2b – y are equal mod 2b

(have the same remainder when divided by 2b)
• Ignoring carries is equivalent to doing arithmetic

mod 2b

Mapping Signed -> Unsigned

=

+16

Signed vs. Unsigned in C
• Constants

– Default = signed integers
– Unsigned if they have “U” as a suffix

• E.g. 0U, 1234567U
– Size can by typed too

• E.g. 1234567890123456ULL
• Casting

int tx, ty;
unsigned ux, uy;

– Explicit casting
tx = (int) ux;
uy = (unsigned) ty;

– Implicit casting (careful!)
tx = ux;
uy = ty;

Casting Surprises
• If you mix unsigned and signed in a single expression,

signed values are implicitly cast to unsigned
– Including comparison operations <, >, ==, <=, >=

Examples for 32-bit: TMIN = -2,147,483,648 TMAX = 2,147,483,647

Shift Operations
• Left Shift: x << y

– Shift bit-vector x left by y positions
– Throw away extra bits on left, fill with

0’s on right
– Each shift left by 1 bit is the same as

multiplying by 2
• So x << y is the same as x * 2y

• Right Shift: x >> y
– Shift bit-vector x right by y positions
– Throw away extra bits on right

• Logical shift (for unsigned): Fill with
0’s on left

• Arithmetic shift (for signed): Fill
with whatever was MSB on left –
Maintain the sign of x

– Each shift right by 1 is the same as
dividing by 2

01100010Argument x

00010000<< 3

00011000Logical >> 2

00011000Arithmetic >> 2

10100010Argument x

00010000<< 3

00101000Logical >> 2

11101000Arithmetic >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

Masking
• What if you need to extract the 2nd most significant byte of an

integer (i.e. bits 16 through 23)?
– First shift: x >> 16
– Then mask: (x >> 16) & 0xff
–
–
–
–
–
–

• Extracting the sign bit
– (x >> 31) & 1
– Need the “& 1” to clear out all other bits except the LSB

01100001 01100010 01100011 01100100 x

00010000x >> 16

00011000
(x >> 16) & 0xFF

0001000000000000 00000000 01100001 01100010

0001100000000000 00000000 00000000 11111111
 00000000 00000000 00000000 01100010

Sign Extension

• Given a w-bit signed integer x, convert to a
(w+k)-bit signed integer with the same value

• Rule: Make k copies of sign bit
– X2 = Xw-1,…,Xw-1,Xw-1,Xw-2,…,X0

k copies of MSB • • •X

X ′ • • • • • •

• • •

w

wk

Sign Extension Example

•
•
•
•
•
C automatically performs sign extension

 short int x = 12345;
 int ix = (int) x;
 short int y = -12345;
 int iy = (int) y;

Decimal Hex Binary
x 12345 30 39 00110000 01101101
ix 12345 00 00 30 39 00000000 00000000 00110000 01101101
y -12345 CF C7 11001111 11000111
iy -12345 FF FF CF C7 11111111 11111111 11001111 11000111

Fractional Binary Numbers
(Not Floating Point!)

Bits to right of “binary point” represent fractional
powers of 2

• • •

.bi bi–1 b2 b1 b0 b–2 b–3 b–j• • •• • •
1
2
4

2i–1
2i

• • •

1/2
1/4
1/8

2–j

b–1

Fractional Binary Numbers Examples

• What are these numbers in binary?
• 5 and ¾
• 2 and 7/8
• 63/64

• Observations
• Divide by 2 by shifting right
• Multiply by 2 by shifting left
• Numbers of form 0.111111…2 are just below 1.0

101.112

10.1112

0.1111112

Representable Numbers

• Limitation
– Can only exactly represent numbers of the form

x/2k

– Other rational numbers have repeating bit
representations

• Value Representation
1/3 0.0101010101[01]…2

1/5 0.001100110011[0011]…2

1/10 0.0001100110011[0011]…2

Fixed Point Representation
• Pick where you want to put the decimal point
• The position of the binary point affects the range and precision

– Range: difference between the largest and smallest representable
numbers

– Precision: smallest possible difference between any two numbers
• Pro

– Simple: The same hardware that does integer arithmetic can do
fixed point arithmetic

• In fact, the programmer can use ints with an implicit fixed point
– E.g. int balance; // number of pennies in the account

• ints are just fixed point numbers with the binary point to the right
of the LSB

• Con
– There is no good way to pick where the fixed point should be

• Sometimes you need range, sometimes you need precision
• More range = less precision and vice versa

Floating Point Representation
(-1)S * M * 2E

• Sign bit S determines whether number is negative
or positive

• Mantissa M (aka Significand aka “Frac”) normally
a fractional value in range [1.0,2.0).

• Exponent E weights value by power of two
• Encoding

– MSB is sign bit S
– frac field encodes M (but is not equal to M)
– exp field encodes E (but is not equal to E)

s exp frac

Precisions

• Single precision (float): 32 bits

1 8 23
• Double Precision (double): 64 bits

1 11 52
• Extended Precision: 80 bits (Intel only)

1 15 64

s exp frac

s exp frac

s exp frac

Normalization, Bias and Special Values
• “Normalized” means mantissa has form 1.xxxx

– 0.011 * 25 and 1.1 * 23 represent the same number, but the latter makes
better use of available bits

– Since we know the mantissa starts with a 1, don’t bother to store it
– Therefore, when the mantissa is 1.xxxxx, M (i.e. frac) contains xxxxx

• The exponent field does not contain the exponent of the number, but the
offset from a bias
– exp = E + Bias
– Bias = 2|exp|-1 – 1 where |exp| = size of exp field
– (e.g. 127 is the bias for an 8 bit exp)

• Special Values
– The float value 00….0 represents zero
– Exp = 11…1 and Mantissa = 00…0 represents infinity

• E.g. 10.0 / 0.0
– Exp = 11…1 and Mantissa != 00…0 represents NaN

• E.g. 0 * Infinity

Floating Point Example
• How is float 12345.0 represented?
• Value

12345.010 = 110000001110012

 = 1.10000001110012 * 213

s exp (8) frac (23)

Floating Point Example
• How is float 12345.0 represented?
• Value

12345.010 = 110000001110012

 = 1.10000001110012 * 213

• Mantissa
M = 1.10000001110012

frac = 100000011100100000000002 (Need to extend to fill all 23
bits)

s exp (8) frac (23)

Floating Point Example
• How is float 12345.0 represented?
• Value

12345.010 = 110000001110012

 = 1.10000001110012 * 213

• Mantissa
M = 1.10000001110012

frac = 100000011100100000000002 (Need to extend to fill all 23
bits)

• Exponent
E = 13
Bias = 27 – 1 = 127
exp = 14010 = 100011002

s exp (8) frac (23)

Floating Point Operations

• Basic Idea
– First compute exact result
– Make it fit into desired precision

• Possibly overflow if exponent is too large
• Possibly round to fit into frac

• x +f y = Round(x + y)
• x *f y = Round(x * y)

Floating Point Multiplication

(-1)S1 M1 2E1 * (-1)S2 M2 2E2

• Exact Result
– Sign = S1 ^ S2

– Mantissa: M1 * M2

– Exponent: E1 + E2

• Fixing
– If M ≥ 2, M = M >> 1, E = E + 1
– If E is out of range, overflow
– Round M to fit frac precision

Floating Point Addition
 (-1)S1 M1 2E1 + (-1)S2 M2 2E2

 Assume E
1

 > E
2

●Exact Result
●Sign S, Mantissa M:

●Shift sign and mantissa of
first value left by the difference
of the exponents. This makes
exponents equal, so you can add
the signed mantissas.

●Exponent E: E1
●Fixing

●If M ≥ 2, M = M >> 1, E = E + 1
●If M < 1, M = M << k, E = E – k
●Overflow if E is out of range
●Round M to fit frac precision

(–1)s1 M1

(–1)s2 M2

E1–E2

+

(–1)s M

Rounding Errors

• Since we round on every operation, the
operations are not really associate or
distributive
– Let a = 1.52342, b = 6.2342342, c = 2.2523555

• (a + b) + c = 10.010009700000001
 a + (b + c) = 10.010009699999999
• a * (b + c) = 12.928640480774000
 a * b + a * c = 12.928640480774002

Floating Point Values and the
Programmer

#include <stdio.h>
int main(int argc, char* argv[]) {

float f1 = 1.0;
float f2 = 0.0;
int i;
for (i=0; i<10; i++) {

 f2 += 1.0/10.0;
}
printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
printf(“f1 == f2? %s\n”, f1 == f2 ? “yes” : “no”);
printf("f1 = %10.8f\n", f1);
printf("f2 = %10.8f\n\n", f2);
f1 = 1E30;
f2 = 1E-30;
float f3 = f1 + f2;
printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");
return 0;

}

Floating Point Values and the
Programmer

#include <stdio.h>
int main(int argc, char* argv[]) {

float f1 = 1.0;
float f2 = 0.0;
int i;
for (i=0; i<10; i++) {

 f2 += 1.0/10.0;
}
printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
printf(“f1 == f2? %s\n”, f1 == f2 ? “yes” : “no”);
printf("f1 = %10.8f\n", f1);
printf("f2 = %10.8f\n\n", f2);
f1 = 1E30;
f2 = 1E-30;
float f3 = f1 + f2;
printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");
return 0;

}

$./a.out
0x3f800000 0x3f800001
f1 == f2? no
f1 = 1.000000000
f2 = 1.000000119
f1 == f3? yes

Summary

• As with integers, floats suffer from the fixed
number of bits available to represent them
– Can get overflow/underflow, just like ints
– Some “simple fractions” have no exact

representation (e.g. 0.1)
– Can also lose precision, unlike ints

• “Every operation gets a slightly wrong result”

• Mathematically equivalent ways of writing an
expression may compute different results

• NEVER test floating point values for equality!

	Slide1
	Slide2
	Slide3
	Slide4
	Slide5
	Slide7
	Slide8
	Slide9
	Slide10
	Slide11
	Slide14
	Slide15
	Slide16
	Slide17
	Slide18
	Slide19
	Slide20
	Slide21
	Slide22
	Slide27
	Slide28
	Slide29
	Slide23
	Slide24
	Slide25
	Slide26
	Slide30
	Slide31
	Slide32

