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Agenda

• Review integer representations
– How they show up in C

• Shifting / Masks
• Sign Extension
• Floating Point – more detail



How can we represent negative 
numbers?

• Sign-and-Magnitude
– MSB denotes sign of number, rest of bits denote magnitude
– E.g. 1001 = -1
– Two zeros (0000 and 1000) and you need different hardware for + 

and –
• One’s Complement (a.k.a. Bitwise Complement)

– Flip all bits to get the negative of a number
– E.g. 1110 = -1
– Two zeros (0000 and 11111)

• Two’s Complement
– To get the negative of a number, flip all bits and add 1
– E.g. 1111 = -1
– Only one zero, can use same hardware for + and -, as well as for 

signed/unsigned
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Two’s Complement

• Why does it work?
– The one’s complement of a b-bit positive number y 

is (2b – 1) – y
• E.g. -3 = 11002 in one’s complement, which is 12 if it 

were unsigned
(24 – 1) – 3 = 12

– Two’s Complement adds 1 to the one’s 
complement, thus -y is 2b – y  (or -x == (~x + 1))

• –y and 2b – y are equal mod 2b 

(have the same remainder when divided by 2b)
• Ignoring carries is equivalent to doing arithmetic 

mod 2b



Mapping Signed -> Unsigned

=
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Signed vs. Unsigned in C
• Constants

– Default = signed integers
– Unsigned if they have “U” as a suffix

• E.g. 0U, 1234567U
– Size can by typed too

• E.g. 1234567890123456ULL
• Casting

int tx, ty;
unsigned ux, uy;

– Explicit casting
tx = (int) ux;
uy = (unsigned) ty;

– Implicit casting (careful!)
tx = ux;
uy = ty;



Casting Surprises
• If you mix unsigned and signed in a single expression, 

signed values are implicitly cast to unsigned
– Including comparison operations <, >, ==, <=, >=

Examples for 32-bit: TMIN = -2,147,483,648  TMAX = 2,147,483,647



Shift Operations
• Left Shift:  x << y

– Shift bit-vector x left by y positions
– Throw away extra bits on left, fill with 

0’s on right
– Each shift left by 1 bit is the same as 

multiplying by 2
• So x << y is the same as x * 2y

• Right Shift:  x >> y
– Shift bit-vector x right by y positions
– Throw away extra bits on right

• Logical shift (for unsigned): Fill with 
0’s on left

• Arithmetic shift (for signed): Fill 
with whatever was MSB on left – 
Maintain the sign of x

– Each shift right by 1 is the same as 
dividing by 2

01100010Argument x

00010000<< 3

00011000Logical >> 2

00011000Arithmetic >> 2

10100010Argument x

00010000<< 3

00101000Logical >> 2

11101000Arithmetic >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000



Masking
• What if you need to extract the 2nd most significant byte of an 

integer (i.e. bits 16 through 23)?
– First shift:  x >> 16
– Then mask: (x >> 16) & 0xff
–
–
–
–
–
–

• Extracting the sign bit
– (x >> 31) & 1
– Need the “& 1” to clear out all other bits except the LSB

01100001 01100010 01100011 01100100 x

00010000x >> 16

00011000
( x >> 16) & 0xFF

0001000000000000 00000000 01100001 01100010 

0001100000000000 00000000 00000000 11111111
 00000000 00000000 00000000 01100010 



Sign Extension

• Given a w-bit signed integer x, convert to a 
(w+k)-bit signed integer with the same value

• Rule: Make k copies of sign bit
– X2 = Xw-1,…,Xw-1,Xw-1,Xw-2,…,X0

k copies of MSB • • •X 

X ′ • • • • • •

• • •

w

wk



Sign Extension Example

•
•
•
•
•
C automatically performs sign extension

  short int x =  12345;
  int      ix = (int) x; 
  short int y = -12345;
  int      iy = (int) y;

Decimal Hex Binary
x 12345 30 39 00110000 01101101
ix 12345 00 00 30 39 00000000 00000000 00110000 01101101
y -12345 CF C7 11001111 11000111
iy -12345 FF FF CF C7 11111111 11111111 11001111 11000111



Fractional Binary Numbers
(Not Floating Point!)

Bits to right of “binary point” represent fractional 
powers of 2

• • •

.bi bi–1 b2 b1 b0 b–2 b–3 b–j• • •• • •
1
2
4

2i–1
2i

• • •

1/2
1/4
1/8

2–j

b–1



Fractional Binary Numbers Examples

• What are these numbers in binary?
• 5 and ¾
• 2 and 7/8
• 63/64

• Observations
• Divide by 2 by shifting right
• Multiply by 2 by shifting left
• Numbers of form 0.111111…2 are just below 1.0

101.112

10.1112

0.1111112



Representable Numbers

• Limitation
– Can only exactly represent numbers of the form 

x/2k

– Other rational numbers have repeating bit 
representations

• Value Representation
1/3 0.0101010101[01]…2

1/5 0.001100110011[0011]…2

1/10 0.0001100110011[0011]…2



Fixed Point Representation
• Pick where you want to put the decimal point
• The position of the binary point affects the range and precision

– Range: difference between the largest and smallest representable 
numbers

– Precision: smallest possible difference between any two numbers
• Pro

– Simple: The same hardware that does integer arithmetic can do 
fixed point arithmetic

• In fact, the programmer can use ints with an implicit fixed point
– E.g. int balance; // number of pennies in the account

• ints are just fixed point numbers with the binary point to the right 
of the LSB

• Con
– There is no good way to pick where the fixed point should be

• Sometimes you need range, sometimes you need precision
• More range = less precision and vice versa



Floating Point Representation
(-1)S * M * 2E

• Sign bit S determines whether number is negative 
or positive

• Mantissa M (aka Significand aka “Frac”) normally 
a fractional value in range [1.0,2.0).

• Exponent E weights value by power of two
• Encoding

– MSB is sign bit S
– frac field encodes M (but is not equal to M)
– exp field encodes E (but is not equal to E)

s exp frac



Precisions

• Single precision (float): 32 bits

1        8                          23
• Double Precision (double): 64 bits

1       11                         52
• Extended Precision: 80 bits (Intel only)

1       15                         64

s exp frac

s exp frac

s exp frac



Normalization, Bias and Special Values
• “Normalized” means mantissa has form 1.xxxx

– 0.011 * 25 and 1.1 * 23 represent the same number, but the latter makes 
better use of available bits

– Since we know the mantissa starts with a 1, don’t bother to store it
– Therefore, when the mantissa is 1.xxxxx, M (i.e. frac) contains xxxxx

• The exponent field does not contain the exponent of the number, but the 
offset from a bias
– exp = E + Bias
– Bias = 2|exp|-1 – 1 where |exp| = size of exp field
– (e.g. 127 is the bias for an 8 bit exp)

• Special Values
– The float value 00….0 represents zero
– Exp = 11…1 and Mantissa = 00…0 represents infinity

• E.g. 10.0 / 0.0
– Exp = 11…1 and Mantissa != 00…0 represents NaN

• E.g. 0 * Infinity



Floating Point Example
• How is float 12345.0 represented?
• Value

12345.010 = 110000001110012

            = 1.10000001110012 * 213

s exp (8) frac (23)



Floating Point Example
• How is float 12345.0 represented?
• Value

12345.010 = 110000001110012

            = 1.10000001110012 * 213

• Mantissa
M = 1.10000001110012

frac = 100000011100100000000002 (Need to extend to fill all 23 
bits)

s exp (8) frac (23)



Floating Point Example
• How is float 12345.0 represented?
• Value

12345.010 = 110000001110012

            = 1.10000001110012 * 213

• Mantissa
M = 1.10000001110012

frac = 100000011100100000000002 (Need to extend to fill all 23 
bits)

• Exponent
E = 13
Bias = 27 – 1 = 127
exp = 14010 = 100011002

s exp (8) frac (23)



Floating Point Operations

• Basic Idea
– First compute exact result
– Make it fit into desired precision

• Possibly overflow if exponent is too large
• Possibly round to fit into frac

• x +f y = Round(x + y)
• x *f y = Round(x * y)



Floating Point Multiplication

(-1)S1 M1 2E1 * (-1)S2 M2 2E2

• Exact Result
– Sign = S1 ^ S2

– Mantissa: M1 * M2

– Exponent: E1 + E2

• Fixing
– If M ≥ 2, M = M >> 1, E = E + 1
– If E is out of range, overflow
– Round M to fit frac precision



Floating Point Addition
                          (-1)S1 M1 2E1 + (-1)S2 M2 2E2

                                          Assume E
1

 > E
2

●Exact Result
●Sign S, Mantissa M:

●Shift sign and mantissa of 
first value left by the difference 
of the exponents. This makes
exponents equal, so you can add
the signed mantissas.

●Exponent E:  E1
●Fixing

●If M ≥ 2, M = M >> 1, E = E + 1
●If M < 1, M = M << k, E = E – k
●Overflow if E is out of range
●Round M to fit frac precision

(–1)s1 M1 

(–1)s2 M2 

E1–E2

+

(–1)s M



Rounding Errors

• Since we round on every operation, the 
operations are not really associate or 
distributive
– Let a = 1.52342, b = 6.2342342, c = 2.2523555

• (a + b) + c = 10.010009700000001
    a + (b + c) = 10.010009699999999
• a * (b + c)    = 12.928640480774000
   a * b + a * c = 12.928640480774002



Floating Point Values and the 
Programmer

#include <stdio.h>
int main(int argc, char* argv[]) {

float f1 = 1.0;
float f2 = 0.0;
int i;
for ( i=0; i<10; i++ ) {

    f2 += 1.0/10.0;
}
printf("0x%08x  0x%08x\n", *(int*)&f1, *(int*)&f2);
printf(“f1 == f2? %s\n”, f1 == f2 ? “yes” : “no”);
printf("f1 = %10.8f\n", f1);
printf("f2 = %10.8f\n\n", f2);
f1 = 1E30;
f2 = 1E-30;
float f3 = f1 + f2;
printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );
return 0;

}



Floating Point Values and the 
Programmer

#include <stdio.h>
int main(int argc, char* argv[]) {

float f1 = 1.0;
float f2 = 0.0;
int i;
for ( i=0; i<10; i++ ) {

    f2 += 1.0/10.0;
}
printf("0x%08x  0x%08x\n", *(int*)&f1, *(int*)&f2);
printf(“f1 == f2? %s\n”, f1 == f2 ? “yes” : “no”);
printf("f1 = %10.8f\n", f1);
printf("f2 = %10.8f\n\n", f2);
f1 = 1E30;
f2 = 1E-30;
float f3 = f1 + f2;
printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );
return 0;

}

$ ./a.out 
0x3f800000  0x3f800001
f1 == f2? no
f1 = 1.000000000
f2 = 1.000000119
f1 == f3? yes



Summary

• As with integers, floats suffer from the fixed 
number of bits available to represent them
– Can get overflow/underflow, just like ints
– Some “simple fractions” have no exact 

representation (e.g. 0.1)
– Can also lose precision, unlike ints

• “Every operation gets a slightly wrong result”

• Mathematically equivalent ways of writing an 
expression may compute different results

• NEVER test floating point values for equality!
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