CSE 351 Section 4

1/26/12

Agenda

• Review integer representations

– How they show up in C

- Shifting / Masks
- Sign Extension
- Floating Point more detail

How can we represent negative numbers?

- Sign-and-Magnitude
 - MSB denotes sign of number, rest of bits denote magnitude
 - E.g. 1001 = -1
 - Two zeros (0000 and 1000) and you need different hardware for + and –
- One's Complement (a.k.a. Bitwise Complement)
 - Flip all bits to get the negative of a number
 - E.g. 1110 = -1
 - Two zeros (0000 and 11111)
- Two's Complement
 - To get the negative of a number, flip all bits and add 1
 - E.g. 1111 = -1
 - Only one zero, can use same hardware for + and -, as well as for signed/unsigned

Two's complement

Add		Invert and add		Invert	Invert and add	
4	0100	4	0100	- 4	1100	
+ 3	+ 0011	- 3	+ 1101	+ 3	+ 0011	
= 7	= 0111	= 1	1 0001	- 1	1111	
		drop carry	= 0001			

Two's Complement

- Why does it work?
 - The one's complement of a b-bit positive number y is $(2^{b} 1) y$
 - E.g. -3 = 1100₂ in one's complement, which is 12 if it were unsigned
 (2⁴ 1) 3 = 12
 - Two's Complement adds 1 to the one's complement, thus -y is 2^b – y (or -x == (~x + 1))
 - –y and 2^b y are equal mod 2^b (have the same remainder when divided by 2^b)
 - Ignoring carries is equivalent to doing arithmetic mod 2^b

Mapping Signed -> Unsigned

Bits	Signed		Unsigned
0000	0		0
0001	1		1
0010	2		2
0011	3	=	3
0100	4	\longleftrightarrow	4
0101	5		5
0110	6		6
0111	7		7
1000	-8		8
1001	-7		9
1010	-6	+16	10
1011	-5	<>	11
1100	-4		12
1101	-3		13
1110	-2		14
1111	-1		15

Signed vs. Unsigned in C

- Constants
 - Default = signed integers
 - Unsigned if they have "U" as a suffix
 - E.g. 0U, 1234567U
 - Size can by typed too
 - E.g. 1234567890123456ULL
- Casting

int tx, ty; unsigned ux, uy; - Explicit casting tx = (int) ux; uy = (unsigned) ty;

- Implicit casting (careful!)

```
tx = ux;
uy = ty;
```

Casting Surprises

 If you mix unsigned and signed in a single expression, signed values are implicitly cast to unsigned

– Including comparison operations <, >, ==, <=, >=

Examples for 32-bit: TMIN = -2,147,483,648 TMAX = 2,147,483,647

Constant 1	Constant 2	Evaluated As	Relation between C1 and C2
0	0U	Unsigned	==
-1	0	Signed	<
-1	0U	Unsigned	>
2147483647	-2147483648	Signed	>
2147483647U	-2147483648	Unsigned	<
-1	-2	Signed	>
0U – 1	-2	Unsigned	>
2147483647	2147483648U	Unsigned	<
2147483647	(int) 2147483648U	Signed	>

Shift Operations

- Left Shift: x << y
 - Shift bit-vector x left by y positions
 - Throw away extra bits on left, fill with 0's on right
 - Each shift left by 1 bit is the same as multiplying by 2
 - So x << y is the same as x * 2^y
- Right Shift: x >> y
 - Shift bit-vector x right by y positions
 - Throw away extra bits on right
 - Logical shift (for unsigned): Fill with O's on left
 - Arithmetic shift (for signed): Fill with whatever was MSB on left – Maintain the sign of x
 - Each shift right by 1 is the same as dividing by 2

Argument x	01100010
<< 3	00010000
Logical >> 2	00011000
Arithmetic >> 2	00011000

Argument x	10100010
<< 3	00010000
Logical >> 2	00101000
Arithmetic >> 2	11101000

Masking

- What if you need to extract the 2nd most significant byte of an integer (i.e. bits 16 through 23)?
 - First shift: x >> 16
 - Then mask: (x >> 16) & 0xff

x >> 16 0000000 0000000 01100001 0110)0100
	00010
(x >> 16) & 0xFF 00000000 0000000 0000000 0110	11111 00010

- Extracting the sign bit
 - (x >> 31) & 1
 - Need the "& 1" to clear out all other bits except the LSB

Sign Extension

- Given a w-bit signed integer x, convert to a (w+k)-bit signed integer with the same value
- Rule: Make k copies of sign bit

Sign Extension Example

short int x = 12345; int ix = (int) x; short int y = -12345; int iy = (int) y;

•	Decimal	Hex	Binary
х	12345	30 39	00110000 01101101
i¥	12345	00 00 30 39	0000000 0000000 00110000 01101101
У	-12345	CF C7	11001111 11000111
iy	-12345	FF FF CF C7	11111111 1111111 11001111 11000111

C automatically performs sign extension

Bits to right of "binary point" represent fractional powers of 2

Fractional Binary Numbers Examples

- What are these numbers in binary?
 - 5 and ³/₄ 101.11₂
 - 2 and 7/8 10.111₂
 - 63/64 0.111111₂
- Observations
 - Divide by 2 by shifting right
 - Multiply by 2 by shifting left
 - Numbers of form 0.111111...₂ are just below 1.0

Representable Numbers

- Limitation
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations
- Value Representation
 - 1/3 0.0101010101[01]...₂
 - 1/5 0.001100110011[0011]...₂

1/10 0.0001100110011[0011]...2

Fixed Point Representation

- Pick where you want to put the decimal point
- The position of the binary point affects the <u>range</u> and <u>precision</u>
 - Range: difference between the largest and smallest representable numbers
 - Precision: smallest possible difference between any two numbers
- Pro
- Simple: The same hardware that does integer arithmetic can do fixed point arithmetic
 - In fact, the programmer can use ints with an implicit fixed point
 E.g. int balance; // number of pennies in the account
 - ints are just fixed point numbers with the binary point to the right of the LSB

- Con
- There is no good way to pick where the fixed point should be
 - Sometimes you need range, sometimes you need precision
 - More range = less precision and vice versa

Floating Point Representation

(-1)^S * M * 2^E

- Sign bit S determines whether number is negative or positive
- Mantissa M (aka Significand aka "Frac") normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
 - MSB is sign bit S
 - frac field encodes M (but is not equal to M)
 - exp field <u>encodes</u> E (but is not equal to E)

s exp frac

Precisions

• Single precision (float): 32 bits

• Double Precision (double): 64 bits

S	exp	frac
1	11	52

• Extended Precision: 80 bits (Intel only)

S	exp	frac
1	15	64

Normalization, Bias and Special Values

- "Normalized" means mantissa has form 1.xxxx
 - 0.011 * 2⁵ and 1.1 * 2³ represent the same number, but the latter makes better use of available bits
 - Since we know the mantissa starts with a 1, don't bother to store it
 - Therefore, when the mantissa is 1.xxxxx, M (i.e. frac) contains xxxxx
- The exponent field does not contain the exponent of the number, but the offset from a bias
 - $\exp = E + Bias$
 - Bias = $2^{|\exp|-1}$ 1 where $|\exp|$ = size of exp field
 - (e.g. 127 is the bias for an 8 bit exp)
- Special Values
 - The float value 00....0 represents zero
 - Exp = 11...1 and Mantissa = 00...0 represents infinity
 - E.g. 10.0 / 0.0
 - Exp = 11...1 and Mantissa != 00...0 represents NaN
 - E.g. 0 * Infinity

Floating Point Example

s exp (8) frac (23)

- How is float 12345.0 represented?
- Value

 $12345.0_{10} = 11000000111001_{2}$

 $= 1.100000111001_2 * 2^{13}$

Floating Point Example

exp (8) frac (23) How is float 12345.0 represented?

Value ۲

•

S

 $12345.0_{10} = 11000000111001_{2}$

 $= 1.100000111001_2 * 2^{13}$

Mantissa

 $M = 1.1000000111001_{2}$

frac = 10000011100100000000_2 (Need to extend to fill all 23 bits)

Floating Point Example

frac (23)

How is float 12345.0 represented?

exp (8)

• Value

S

 $12345.0_{10} = 11000000111001_{2}$

 $= 1.100000111001_2 * 2^{13}$

• Mantissa

M = 1.<u>1000000111001</u>₂

frac = <u>1000000111001</u>000000000₂ (Need to extend to fill all 23 bits)

• Exponent

E = 13 Bias = $2^7 - 1 = 127$ exp = $140_{10} = 10001100_2$

Floating Point Operations

- Basic Idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent is too large
 - Possibly round to fit into frac
- $x +_f y = Round(x + y)$
- $x *_{f} y = Round(x * y)$

Floating Point Multiplication

 $(-1)^{S_1} M_1^{2E_1} * (-1)^{S_2} M_2^{2E_2}$

- Exact Result
 - Sign = S₁ ^ S₂
 - Mantissa: $M_1 * M_2$
 - Exponent: $E_1 + E_2$
- Fixing
 - If M \ge 2, M = M >> 1, E = E + 1
 - If E is out of range, overflow
 - Round M to fit frac precision

Floating Point Addition

```
(-1)^{S_1} M_1 2^{E_1} + (-1)^{S_2} M_2 2^{E_2}
```


Rounding Errors

Since we round on every operation, the operations are not really associate or distributive

- Let a = 1.52342, b = 6.2342342, c = 2.2523555

(a + b) + c = 10.01000970000001 a + (b + c) = 10.010009699999999
a * (b + c) = 12.928640480774000

a * b + a * c = 12.928640480774**002**

Floating Point Values and the Programmer

```
#include <stdio.h>
```

```
int main(int argc, char* argv[]) {
    float f1 = 1.0;
    float f2 = 0.0;
    int i;
    for ( i=0; i<10; i++ ) {</pre>
        f2 += 1.0/10.0;
    }
    printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
    printf("f1 == f2? %s\n", f1 == f2 ? "yes" : "no");
    printf("f1 = %10.8f\n", f1);
    printf("f2 = \$10.8f\ln, n", f2);
    f1 = 1E30;
    f2 = 1E-30;
    float f3 = f1 + f2;
    printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );
    return 0;
}
```

Floating Point Values and the Programmer

```
#include <stdio.h>
                                                      $ ./a.out
                                                      0x3f800000 0x3f800001
                                                      f1 == f2? no
int main(int argc, char* argv[]) {
                                                      f1 = 1.00000000
    float f1 = 1.0;
    float f2 = 0.0;
    int i;
    for ( i=0; i<10; i++ ) {</pre>
        f2 += 1.0/10.0;
    }
    printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
    printf("f1 == f2? %s\n", f1 == f2 ? "yes" : "no");
    printf("f1 = %10.8f\n", f1);
    printf("f2 = \$10.8f\ln, n", f2);
    f1 = 1E30;
    f2 = 1E-30;
    float f3 = f1 + f2;
    printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );
    return 0;
}
```

f2 = 1.00000119f1 == f3? yes

Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some "simple fractions" have no exact representation (e.g. 0.1)
 - Can also lose precision, unlike ints
 - "Every operation gets a slightly wrong result"
- Mathematically equivalent ways of writing an expression may compute different results
- **NEVER** test floating point values for equality!