
CSE 351
Section 2

1/12/12

Agenda

• Review memory and data representation
– NAND Gate
– Binary/Decimal/Hex
– Memory Organization and Pointers
– Endianness

NAND Gate

• Output is always high (1) except when both
inputs are high
– That is, the opposite of an AND

• How does this circuit work?
Truth Table

NAND Gate

• Output is always high (1) except when both
inputs are high
– That is, the opposite of an AND

• How does this circuit work?
Truth Table

PNP Transistors
“On” (behave like a wire)
when input is low (0)

NPN Transistors
“On” (behave like a wire)
when input is high (1)

NAND Gate

• Output is always high (1) except when both
inputs are high
– That is, the opposite of an AND

• How does this circuit work?
Truth Table

0 0

0

0

1

X

X

NAND Gate

• Output is always high (1) except when both
inputs are high
– That is, the opposite of an AND

• How does this circuit work?
Truth Table

0 1

0

1

1

X

X

NAND Gate

• Output is always high (1) except when both
inputs are high
– That is, the opposite of an AND

• How does this circuit work?
Truth Table

1 0

1

0

1

X

X

NAND Gate

• Output is always high (1) except when both
inputs are high
– That is, the opposite of an AND

• How does this circuit work?
Truth Table

1 1

1

1

0

X X

Number Formats
• Three bases programmers normally work in

– Base 2: Binary
– Base 10: Decimal
– Base 16: Hexadecimal

• What do they mean?
– Each digit is a representation of the base raised to a power
– Decimal: 24610 = 2*102 + 4*101 + 6*100

– Binary: 111101102 = 1*27 + 1*26 + 1*25 + 1*24 + 0*23 + 1*22 +
 1*21 + 0*20 = 24610

– Hex: F616 = 0xF6 = 15*161 + 6*160 = 24610

• Easy way to convert between Binary and Hex
1. Divide binary number into chunks of 4
2. Convert each chunk of 4 binary digits into a hex number

e.g. 111101102 = 1111 0110 = F 6 = F616

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

Hex
Decim

al

Binary

Memory Organization
• Each memory address references a

particular byte in memory
• A 32-bit value (such as an int) is 4-

bytes long. Therefore, it takes
up 4 memory addresses.
However, to reference this
value, you look at the memory
address of the first byte.
– E.g. If address 0004 holds an int,

addresses 0004, 0005, 0006,
0007 hold that int.

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words Bytes Addr.

0012
0013
0014

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

11

Byte Ordering Example
• Big-Endian (PPC, Sparc, Internet)

– Least significant byte has highest address

• Little-Endian (x86)
– Least significant byte has lowest address

• Example
– Variable has 4-byte representation 0x01234567
– Address of variable is 0x100

0x100 0x101 0x102 0x103

01 23 45 67
0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

01

12

Byte Ordering Example
• Another way to visualize it

0x100
0x101
0x102
0x103

01

Big Endian

01
23
45
67

0x104

0x0FF

01

0x100
0x101
0x102
0x103

01

Little Endian

67
45
23
01

0x104

0x0FF

• Little Endian is Least significant byte first
• Big Endian is Most significant byte first

13

Representing Integers
• int A = 12345;
• int B = -12345;
• long int C = 12345;

Decimal: 12345

Binary: 0011 0000 0011 1001

Hex: 3 0 3 9

39
30
00
00

IA32, x86-64 A

30
39

00
00

Sun A

C7
CF
FF
FF

IA32, x86-64 B

CF
C7

FF
FF

Sun B

Two’s complement representation
for negative integers (covered
later)

00
00
00
00

39
30
00
00

X86-64 C

30
39

00
00

Sun C
39
30
00
00

IA32 C

14

Addresses and Pointers

• Address is a location in memory
• Pointer is a data object

that contains an address
• Address 0004

stores the value 351 (or 15F16)
• In C:

int x = 351;
//The compiler chooses to store x
//at address 0004. Could really be anywhere.

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

5F010000

15

Addresses and Pointers
• Address is a location in memory
• Pointer is a data object

that contains an address
• Address 0004

stores the value 351 (or 15F16)
• Pointer to address 0004

stored at address 001C
• C:

int x = 351;
int* y = &x; //Pointer y is the address of x

• That is, y points to where x is located
• Compiler chooses to put the pointer y

at address 001C

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

04000000

5F010000

16

Addresses and Pointers
• Update the value of x by using the pointer
• C:

int x = 351;
int* y = &x;
*y = 5;

• Read as “the value of the variable
stored at the address in y gets 5”.
This is the same as doing “x=5”

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

04000000

05000000

17

Addresses and Pointers
• Pointer to a pointer

in 0024
• C:

int x = 351;
int* y = &x;
*y = 5;
int** z = &y;

• Pointer z is stored at address 0024
by the compiler.

• z points to y, and y points to x.
• Could do “**z” to get

the value of x.

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

04000000

1C000000

05000000

18

Addresses and Pointers
• What happens when you do y = y + 1?
• C:

int x = 351;
int* y = &x;
*y = 5;
int** z = &y;
y = y + 1;

• y gets the previous address of x plus
4 bytes (size of an int).

• y no longer points to x

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

08000000

1C000000

05000000

HW 0
• http://www.cs.washington.edu/education/courses/cse351/12wi/homework-0.html

Questions? What were your results?

http://www.cs.washington.edu/education/courses/cse351/12wi/homework-0.html

	Slide1
	Slide2
	Slide4
	Slide5
	Slide6
	Slide7
	Slide8
	Slide9
	Slide10
	Slide11
	Slide18
	Slide19
	Slide20
	Slide12
	Slide13
	Slide16
	Slide14
	Slide17
	Slide3

