CSE 351
Section 2



Agenda

* Review memory and data representation
— NAND Gate
— Binary/Decimal/Hex
— Memory Organization and Pointers
— Endianness



NAND Gate

* QOutput is always high (1) except when both
inputs are high

— That is, the opposite of an AND
* How does this circuit work?

vdd vdd

=

Truth Table

L 5o Tow
I Ea
: _“: 1 1 0




NAND Gate

* QOutput is always high (1) except when both
inputs are high
— That is, the opposite of an AND

* How does this circuit work?

vid  ydd

Truth Table

PNP Transistors A—C{[ =1 m_m

“On” (behave like a wire)
when input is low (0) O out

NPN Transistors ,

“On” (behave like a wire)
when input is high (1) E'“:

m =2 O O
L O B O
(o I S N

?55



NAND Gate

* QOutput is always high (1) except when both
inputs are high
— That is, the opposite of an AND

* How does this circuit work?

Ydd ydd

Truth Table
I A B |Out
| P 0 0 1
0 1 1
0 ‘“'|E( 1 0 1
0 E-lE( 1 1 0




NAND Gate

* QOutput is always high (1) except when both
inputs are high
— That is, the opposite of an AND

* How does this circuit work?

Meld Veld

Truth Table
0 .u.—c‘.i[jl E-{X m_m
i 1 0 0 1
0 1 1
o 1 0 1
1 E_“: 1 1 0

LEH



NAND Gate

* QOutput is always high (1) except when both
inputs are high

— That is, the opposite of an AND
* How does this circuit work?

vid  ydd

] Truth Table

L oo A B |out_
i 1 0 0 1
0 1 1
1 “‘l[ 1 0 1
0 E-lE( 1 1 0

LEH



NAND Gate

* QOutput is always high (1) except when both
inputs are high

— That is, the opposite of an AND
* How does this circuit work?

yeld v

1 Truth Table

1 a=qlx =[x A B |out_
— 0 0 1
1 0 1 1
1 “_l[_ 1 0 1
i s

LEH



Three bases programmers normally work in

Number Formats

Base 2: Binary
Base 10: Decimal
Base 16: Hexadecimal

What do they mean?

%

+

Each digit is a representation of the base raised to a power

Decimal: 246,, = 2*10% + 4*10! + 6*10°

Binary: 11110110, = 1*27 + 1*26 + 1*25+ 1*24 + 0*23 + 1*22 +
1%21 + 0%20= 246,

Hex: F6,; = OXF6 = 15*16 + 6*16° = 246,

Easy way to convert between Binary and Hex

1.
2.

Divide binary number into chunks of 4

Convert each chunk of 4 binary digits into a hex number
e.g. 11110110,=1111 0110=F 6 =F6

[r[m[e]ofe[>ef=[~]o]a[>]<]~[=>]°]

Q%)
£

8.
2

%

0000

0001

0010

0011

0100

0101

0110

0111

1000

cle[NTelo[r eI [=°] @

1001

1010

1011

1100

1101

1110

1111




Memory Organization

Each memory address references a
particular byte in memory

A 32-bit value (such as an int) is 4-
bytes long. Therefore, it takes
up 4 memory addresses.
However, to reference this
value, you look at the memory
address of the first byte.

— E.g. If address 0004 holds an int,
addresses 0004, 0005, 0006,
0007 hold that int.

64-bit
Words

Addr

0000

Addr

0008

32-bit
Words

Addr

0000

Addr

0004

Addr

0008

Addr

0012

Bytes Addr.

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014



Byte Ordering Example

* Big-Endian (PPC, Sparc, Internet)

— Least significant byte has highest address
* Little-Endian (x86)

— Least significant byte has lowest address

* Example
— Variable has 4-byte representation 0x01234567

— Address of variable is 0x100
0x100 0x101 0x102 0x103

Big Endian Jor] [23] [¢5] [67 1

0x100 0x101 0x102 0x103

Little Endian le7 ] [45] [23] [o1]




Byte Ordering Example

* Another way to visualize it

Big Endian Little Endian
OxOFF OxOFF

01 | | ox100 67 | | 0x100

23 | | 0x101 45 | | 0x101

45 || 0x102 23 | | 0x102

67 || 0x103 01 0x103

0x104 0x104

* Little Endian is Least significant byte first
* Big Endian is Most significant byte first



Representing Integers

Decimal: 12345

* int A = 12345; Binary: 0011 0000 0011 1001

* int B = -12345;
* long int C = 12345; |Hex: 3 0 3 9
IA32, x86-64 A Sun A
IA32 C X86-64 C Sun C
39 00
30 00 39 39 00
00 30 30 30 00
00 39 00 00 30
00 00 39
IA32, x86-64 B Sun B 00
C7 FF 00
CF FF 00

FF CFl ~~__ 00
FF C7 Two’s complement representation
for negative integers (covered

later)




Addresses and Pointers

Address is a location in memory

00 00 01 S5F

Pointer is a data object
that contains an address \
Address 0004
stores the value 351 (or 15F )
In C:
int x = 351;

//The compiler chooses to store x

//at address 0004. Could really be anywhere.

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024



Addresses and Pointers

Address is a location in memory

Pointer is a data object
that contains an address

Address 0004
stores the value 351 (or 15F ) 0000
Pointer to address 0004 00 .00 01 5F | 0004
stored at address 001C 0008
C: 000C
int x =351; 0010
int* y = &x; //Pointery is the address of x 0014
0018
That is, y points to where x is located 00 00 00 041 o01C
Compiler chooses to put the pointery 0020
at address 001C 0024




Addresses and Pointers

* Update the value of x by using the pointer

* C
int x =351;
int*y = &x;
Yy =5;

Read as “the value of the variable
stored at the address in y gets 5”.
This is the same as doing “x=5"

00 00 00 05

00 00 00 04

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024



Addresses and Pointers

Pointer to a pointer
in 0024

C:
int x =351,
int* y = &x;
Yy =5;
int** z = &y;

Pointer z is stored at address 0024
by the compiler.

* zpointstoy, and y points to x.
* Could do “**z2” to get

the value of x.

00 00 00 05

00 00 00 04

00.00 00 1C

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024



Addresses and Pointers

* What happens whenyoudoy=y+1?

* C
int x =351;
int*y = &x;
*y = 5;
int** z = &y;
y=y+1

* vy gets the previous address of x plus
4 bytes (size of an int).

* vy no longer points to x

\

00 00 00 05

00 00 00 08

00.00 00 1C

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024



HW O

*  http://www.cs.washington.edu/education/courses/cse351/12wi/homework-0.html

Questions? What were your results?


http://www.cs.washington.edu/education/courses/cse351/12wi/homework-0.html

	Slide1
	Slide2
	Slide4
	Slide5
	Slide6
	Slide7
	Slide8
	Slide9
	Slide10
	Slide11
	Slide18
	Slide19
	Slide20
	Slide12
	Slide13
	Slide16
	Slide14
	Slide17
	Slide3

