CSE 351

Section 2

$$
1 / 12 / 12
$$

Agenda

- Review memory and data representation
- NAND Gate
- Binary/Decimal/Hex
- Memory Organization and Pointers
- Endianness

NAND Gate

- Output is always high (1) except when both inputs are high
- That is, the opposite of an AND
- How does this circuit work?

Truth Table

A	B	Out
0	0	1
0	1	1
1	0	1
1	1	0

NAND Gate

- Output is always high (1) except when both inputs are high
- That is, the opposite of an AND
- How does this circuit work?

NAND Gate

- Output is always high (1) except when both inputs are high
- That is, the opposite of an AND
- How does this circuit work?

Truth Table

A	B	Out
0	0	1
0	1	1
1	0	1
1	1	0

NAND Gate

- Output is always high (1) except when both inputs are high
- That is, the opposite of an AND
- How does this circuit work?

Truth Table

A	B	Out
0	0	1
0	1	1
1	0	1
1	1	0

NAND Gate

- Output is always high (1) except when both inputs are high
- That is, the opposite of an AND
- How does this circuit work?

Truth Table

A	B	Out
0	0	1
0	1	1
1	0	1
1	1	0

NAND Gate

- Output is always high (1) except when both inputs are high
- That is, the opposite of an AND
- How does this circuit work?

Truth Table

A	B	Out
0	0	1
0	1	1
1	0	1
1	1	0

Number Formats

- Three bases programmers normally work in
- Base 2: Binary
- Base 10: Decimal
- Base 16: Hexadecimal
- What do they mean?
- Each digit is a representation of the base raised to a power
- Decimal: $246_{10}=2^{*} 10^{2}+4^{*} 10^{1}+6^{*} 10^{0}$
- Binary: $11110110_{2}=1^{*} 2^{7}+1^{*} 2^{6}+1^{*} 2^{5}+1^{*} 2^{4}+0^{*} 2^{3}+1^{*} 2^{2}+$ $1^{*} 2^{1}+0^{*} 2^{0}=246_{10}$
- Hex: $\mathrm{F6}_{16}=0 \times F 6=15^{*} 16^{1}+6^{*} 16^{0}=246_{10}$
- Easy way to convert between Binary and Hex

1. Divide binary number into chunks of 4
2. Convert each chunk of 4 binary digits into a hex number

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory Organization

64-bit Words	32-bit Words	Bytes	Addr.
			0000
	Addr $=$		0001
	0000		0002
Addr			0003
0000			0004
	Addr $=$ $=$		0005
	0004		0006
			0007
			0008
	Addr		0009
	= 0008		0010
Addr			0011
0008			0012
	Addr		0013
	0012		0014

Byte Ordering Example

- Big-Endian (PPC, Sparc, Internet)
- Least significant byte has highest address
- Little-Endian (x86)
- Least significant byte has lowest address
- Example
- Variable has 4-byte representation 0×01234567
- Address of variable is 0×100

Big Endian

Byte Ordering Example

- Another way to visualize it

Big Endian

	0x0FF
01	0x100
23	0x101
45	0x102
67	0x103
	0x104

Little Endian

	0x0FF
67	0x100
45	0x101
23	0x102
01	0x103
	0x104

- Little Endian is Least significant byte first
- Big Endian is Most significant byte first

Representing Integers

- int $A=12345$;
- int $B=-12345$;
- long int $C=12345$;

Decimal: 12345
Binary: 0011000000111001
Hex: $\quad 3 \quad 0 \quad 3 \quad 9$
IA32, x86-64 A Sun A

| 39 |
| :--- | :--- |
| 30 |
| 00 |
| 00 |

IA32, x86-64 B Sun B

C 7
CF
FF
FF

IA32 C	X86-64 C	Sun C
39 30 00 00	39 30 00 00	00 00 30

Two's complement representation for negative integers (covered later)

Addresses and Pointers

- Address is a location in memory
- Pointer is a data object that contains an address
- Address 0004
stores the value 351 (or $15 \mathrm{~F}_{16}$)
- In C:

```
        int x = 351;
        //The compiler chooses to store x
//at address 0004. Could really be anywhere.
```


0000 0008 000C 0010 0014 0018 001C 0020 0024

Addresses and Pointers

- Address is a location in memory
- Pointer is a data object
that contains an address
- Address 0004
stores the value 351 (or $15 F_{16}$)
- Pointer to address 0004 stored at address 001C
- C:

$$
\text { int } x=351 ;
$$

int* $y=\& x$; //Pointer y is the address of x

- That is, y points to where x is located
- Compiler chooses to put the pointer y at address 001C

0000 0004 0008 000C 0010 0014 0018 001C 0020 0024

Addresses and Pointers

- Update the value of x by using the pointer
- C :

$$
\begin{aligned}
& \text { int } x=351 ; \\
& \text { int }{ }^{*} y=\& x ; \\
& \text { *y } y ;
\end{aligned}
$$

- Read as "the value of the variable stored at the address in y gets 5 ". This is the same as doing " $x=5$ "

Addresses and Pointers

- Pointer to a pointer in 0024
- C :

$$
\begin{aligned}
& \operatorname{int} x=351 ; \\
& \text { int } \\
& \text { *y } y=8 ; \\
& \text { int }^{* *} z=\& y ;
\end{aligned}
$$

- Pointer z is stored at address 0024 by the compiler.
- z points to y , and y points to x .
- Could do "**z" to get
the value of x.

Addresses and Pointers

- What happens when you do $y=y+1$?
- C :

$$
\begin{aligned}
& \operatorname{int} x=351 ; \\
& \text { int }^{*} y=\& x ; \\
& * y=5 ; \\
& \text { int }^{* *} z=\& y ; \\
& y=y+1 ;
\end{aligned}
$$

- y gets the previous address of x plus 4 bytes (size of an int).
- y no longer points to x

HW 0

- http://www.cs.washington.edu/education/courses/cse351/12wi/homework-0.html

Questions? What were your results?

