

Agenda

• Virtual Memory

• Final Review

– Assembly

– Calling Conventions

– Malloc/Free

– Caching

• Questions, Evaluations

Virtual Memory

• Used for 3 things
– Efficient use of main memory (RAM)

• Use RAM as cache for parts of virtual address space
– Some non-cache parts stored to disk
– Some (unallocated) non-cached parts stored nowhere

• Keep only active areas of virtual address space in memory
– Transfer data back and forth as needed

– Memory management
• Each process gets the same full, private linear address space

– Memory protection
• Isolates address spaces
• One process can’t interfere with another’s memory since they operate

in different address spaces
• User process cannot access privileged information

– Different sections of address spaces have different permissions

Address Spaces
• Virtual address space: Set of N = 2n virtual addresses

 {0, 1, 2, 3, …, N-1}

• Physical address space: Set of M = 2m physical addresses (n >> m)
 {0, 1, 2, 3, …, M-1}

• Every byte in main memory:
one physical address, one (or more) virtual addresses

4

VM as a Tool for Caching
• Virtual memory: array of N = 2n contiguous bytes

 think of the array (allocated part) as being stored on
disk

• Physical main memory (DRAM) = cache for allocated virtual memory

• Blocks are called pages; size = 2p

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0

VP 1

VP 2n-p-1

Virtual memory

Unallocated

Cached

Uncached

Unallocated

Cached

Uncached

PP 0

PP 1

Empty

Cached

0

2n-1

2m-1

0

Virtual pages (VP's)
stored on disk

Physical pages (PP's)
cached in DRAM

Disk

5

Virtual Memory

• Each process gets its own private memory space

Physical memory

Virtual memory

Virtual memory

Process 1

Process n

mapping

6

Address Translation: Page Tables
• A page table is an array of page table entries

(PTEs) that maps virtual pages to physical pages.
Here: 8 VPs

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory (disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

7

VM as a Tool for Memory Management
• Memory allocation

– Each virtual page can be mapped to any physical page
– A virtual page can be stored in different physical pages at different

times
• Sharing code and data among processes

– Map virtual pages to the same physical page (here: PP 6)

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

8

VM as a Tool for Memory Protection
• Extend PTEs with permission bits

• Page fault handler checks these before remapping
– If violated, send process SIGSEGV signal (segmentation fault)

– SUP bit indicates whether processes must be running in kernel (supervisor)
mode to access it

Process i: Address READ WRITE

PP 6 Yes No

PP 4 Yes Yes

PP 2 Yes

VP 0:

VP 1:

VP 2:

•
•
•

Process j:

Yes

SUP

No

No

Yes

Address READ WRITE

PP 9 Yes No

PP 6 Yes Yes

PP 11 Yes Yes

SUP

No

Yes

No

VP 0:

VP 1:

VP 2:

Physical
Address Space

PP 2

PP 4

PP 6

PP 8

PP 9

PP 11

9

Assembly – Things to Remember
• .text always goes before your code
• .globl <label> when you want your function to be used by other

modules (i.e. public)
• pushq %rbp and movq %rsp,%rbp when entering a function
• popq %rbp and ret at the end of your function
• Size suffixes must be used when the length can not be implicitly

determined
– To be safe, always use them! (e.g. movq, cmpb, etc.)

• If you need to allocate stack space to store data, the space must be a
multiple of 16.
– E.g. sub $32, %rsp at the start, then add $32, %rsp at the end of

the function

• Register names used must match size suffix of instruction
– E.g. To use the lower byte stored in rax with cmpb, you must use %al, not

%rax.

• Dereferencing
– cmpb (%rdi),%sil

• Compares 1 byte in memory stored at the address in rdi with the lower byte in the rsi
register

Assembly – More Things
• Read only data – data that will not change

 .section .rodata

 mystring:

 .string “Hello world”

– Access the pointer to the start of the string using
$mystring

• Labels really act like pointers to instructions or data
– jmp loop is really saying the next instruction lives at

the address where the loop label points to

• Data segment
.data

my_array: .zero 512

– Allocates 512 bytes for my_array and initializes to zero

x86-64 Calling Conventions

• First six arguments passed in registers

– rdi, rsi, rdx, rcx, r8, r9

• Callee saved registers
– rbx, rbp, r12, r13, r14, r15
– Function being called must save the values in the registers

before using them, and restore them before returning.

• Caller saved registers
– r10, r11
– Calling function must save these registers if it wants to

keep the values in them

• Return value stored in rax

Malloc/Free

• Use malloc when you want to want to
dynamically allocate something
– e.g. the size of a data structure is only known at

runtime

– Data allocated on the heap

p=(int*)malloc(n*sizeof(int));

• Data allocated with malloc must be free’d
when finished with it
free(p);

Caching
• Exploits temporal and spatial locality

– Temporal locality: recently referenced items likely to be referenced again in
the near future

– Spatial locality: items with nearby addresses tend to be referenced close
together in time

• Organized into lines and sets

• Number of lines per set is the associativity

– E.g. 2-way associative means 2 lines per set

• Line consists of valid bit, tag, data block

Caching
E = 2e lines per set

0 1 2 B-1 tag v

valid bit
B = 2b bytes data block per cache line (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

Suggestions
(Not a comprehensive list!)

• Review all lecture and section slides
• Be able to write both assembly and C code to the level

we’ve covered
– Practice writing code at home. Pick some functionality (like

perhaps atoi) and code it in both C and assembly.
– All code you write on the final should be able to be compiled
– Have a solid understanding of pointers
– Have a solid understanding of how the stack works

• Be able to convert a C function into assembly and vice versa
• Understand data representation (2’s complement,

endianness, signed/unsigned, floating point, etc.)
• Know the x64 calling conventions

