
CSE 351
Section 1: Intro to C

Housekeeping
• TAs

– Nick Burgan-Illig
• nmbi@uw.edu
• Office Hours: Th 11:30-12:30, CSE 216

– Cortney Corbin
• ccorbin@cs.washington.edu
• Office Hours: TBD

– Chee Wei Tang
• acetang@cs.washington.edu
• Office Hours: Tu 3:30-4:30, CSE 218

• Sections once a week
– Supplement class material
– Ask questions on homework/labs

• Other avenues for help
– Discussion boards, direct email, office hours
– With 3 TAs, shouldn’t be difficult to find help

mailto:nmbi@uw.edu
mailto:ccorbin@cs.washington.edu
mailto:acetang@cs.washington.edu

Introductions

• Who am I?
• Who are you?

Today

• Overview of C
– Mainly discuss a few differences from Java
– Not a real tutorial, not enough time
– See the C book for a good introduction

• Overview of debugging C programs
• Introduction to pointers in C

Intro to C: Why C?

• It’s ubiquitous
– 2nd most popular language today

• Modern languages are still implemented in C
– Java, Python, Perl, PHP, Ruby

• So are operating systems
• Affords great performance and more control

– “With great freedom comes great
responsibility”

Intro to C: Hello World in Java

/* HelloWorld.java */

class HelloWorld {
public static void main(String[] args){

System.out.println(“Hello, ” +
“world!”);

}
}

Intro to C: Hello World

/* hello.c */
#include <stdio.h>

int main(int argc, char *argv[])
{
printf(“Hello, world!\n”);
return 0;

}

Intro to C: Hello World

/* hello.c */
#include <stdio.h>

int main(int argc, char *argv[])
{
printf(“Hello, world!\n”);
return 0;

}

Preamble of file includes headers,
provides function declarations, useful
comments, etc.

Common headers, see refs:
stdio.h, stdlib.h,
stdint.h, unistd.h,
string.h

/* hello.c */
#include <stdio.h>

int main(int argc, char *argv[])
{
printf(“Hello, world!\n”);
return 0;

}

Intro to C: Hello World
main() is the program’s
entry point, just like Java,
but is not contained in a
class

Intro to C: Compiling

• Previous program in hello.c
• To compile and run:

$ gcc hello.c –o hello –Wall
$./hello
Hello, world!

• Options:
– o What to name the output file
– Wall Print all warnings

Intro to C: C and Java

• C is a weakly typed language
– int, float, long int, double, etc.

• Syntax similar to Java
– if/then/else, do/while, for,

switch/case
• printf/scanf for console I/O
• open/read/write/close for file I/O

Intro to C: Differences from Java
• No classes! No objects!

– Class-like things though; check out structs
– Data only, no methods

• No garbage collection! Not managed!
– Must remember to allocate/deallocate on your own
– No built-in bounds checking

• No exceptions!
– Need to do your own error checking/handling

• No virtual machine!
– Must recompile the code for different architectures
– Compiles to “real” op codes (as opposed to virtual)

Intro to C: References

• The C Programming Language
– Written by the authors of the language
– Concise and precise
– Excellent collection of practice problems

• Linux man pages
– Useful for looking up how to use a particular

function, e.g.:
$ man printf

Intro to C: Debugging

• You write a program, try to run it, and it
crashes. What now?

Intro to C: Debugging

• One option: “printf debugging”
– Add printf statements to the code to see

where/why it crashes
• Another idea: run it through a debugger

– Monitor accesses to variables, see where the
program crashes, verify loop invariants, etc.

• Depends on the situation; one may be easier
than the other

Intro to C: printf Debugging
• printf allows you to print formatted strings
• Arguments include a format string, and data to

display
• Format string is a literal string, containing special

placeholders indicating how to display the data
• Ex:

– printf(“Sum: %d + %d = %d\n”, 1, 2,
1+2)

– %d displays an integer
– Produces “Sum: 1 + 2 = 3”

• Seen “man printf” or the C book for more

Intro to C: Debugging with GDB
/* Buggy program */
#include <stdio.h>

int main(int argc, char* argv[]){
int a = 5, *b = &a;
printf(“%d %d\n”, a, *b);
a ^= a; b = *b ^ a;
printf(“%d %d\n”, a, *b);
return 0;

}

Intro to C: Debugging with GDB
• Use –ggdb to compile with debugging symbols

$ gcc –o foo –Wall -ggdb foo.c
• Invoke with gdb:

$ gdb ./foo
• Important commands:

– run
– break <line# / symbol>
– step
– continue
– info <locals / frame / register>
– print, x
– backtrace
– help

Intro to C: Debugging with GDB
/* Buggy program */
#include <stdio.h>

int main(int argc, char* argv[]){
int a = 5, *b = &a;
printf(“%d %d\n”, a, *b);
a ^= a; b = *b ^ a;
printf(“%d %d\n”, a, *b);
return 0;

}

Intro to C: Taste of Pointers

• Variables in C have types
– int, long, double, float, char, etc.

• A pointer is just another type
– Pointers store addresses of other variables
– int is an integer, but int* is a pointer to an

int
– Same for float and float*, char and

char*, etc.
• “NULL pointers” are pointers containing 0

(zero)

Intro to C: Taste of Pointers
• & is the address-of operator

– Returns the address of a variable
• * is the value-of operator

– Retrieves the value stored at the address in a
pointer

– “Dereferencing”
– NULL pointers cannot be dereferenced

• Ex:
int a = 5; int *ap;
ap = &a; *ap = 10;
printf(“%d %d\n”, a, *ap);

Intro to C: Debugging with GDB
/* Buggy program */
#include <stdio.h>

int main(int argc, char* argv[]){
int a = 5, *b = &a;
printf(“%d %d\n”, a, *b);
a ^= a; b = *b ^ a;
printf(“%d %d\n”, a, *b);
return 0;

}

Intro to C: Debugging with GDB
/* Buggy program */
#include <stdio.h>

int main(int argc, char* argv[]){
int a = 5, *b = &a;
printf(“%d %d\n”, a, *b);
a ^= a; b = *b ^ a;
printf(“%d %d\n”, a, *b);
return 0;

} b becomes NULL, so
dereferencing causes a
crash

Intro to C: Taste of Pointers

• Why are pointers useful?

Intro to C: Taste of Pointers

• Why are pointers useful?
• Some ideas:

– Linked data structures
– Passing by reference
– Avoid copying large blocks of data
– Any others?

• Don’t need to know this stuff now; just
wanted to whet your appetite!

HW0

• Has anyone started yet?
• Any questions?

	Slide1
	Slide2
	Slide3
	Slide4
	Slide5
	Slide6
	Slide7
	Slide8
	Slide9
	Slide10
	Slide11
	Slide12
	Slide13
	Slide14
	Slide15
	Slide16
	Slide17
	Slide18
	Slide20
	Slide19
	Slide21
	Slide22
	Slide23
	Slide24
	Slide25
	Slide26

