
What a computer is

Data

Logic

Monday, February 27, 12

Computers can be really
quite simple

• Need state (memory, registers, etc)
• Need some logic to compute (ALU)
• Need some instructions
• and here is the key: instructions are data;

they are just bits
• Need some wires to connect it all together
• Need a clock to precisely control when

data is modified

Monday, February 27, 12

So let’s “build” one

• State: Let’s keep it simple, and just use a big register
file.

• Logic: We’ll keep it simple and use a single ALU with
a giant MUX at the end to select the operation.

• We’ll keep 1 register off to the side as something
special and we’ll call it the %rip
• We’ll do a little custom logic around %rip too, in

order to support branches
• We’ll use a single clock entering all the register bits

every cycle, and use selective write-enable on them

Monday, February 27, 12

The 351 Workhorse :-)

RIP

registers

ALU

Monday, February 27, 12

Components

• For now we are not going to focus on being
efficient; our focus is on providing a
confidence in you that it can be done.
• Efficiency will come later... but under the

hood computers are not all that efficient
(100’s of Watts have to go somewhere :-)

Monday, February 27, 12

A transistor is a switch
CMOS has 2 types NPN and PNP

input output

An inverter A NAND gate.
Theoretically NAND gates are

“universal” and all other combinatorial
circuits can be synthesized from them.
Of course, it is not the most efficient

way to make complex gates, but it
sufficient for our exercise here...

Ground (negative)

Vdd (positive)

Logic

Monday, February 27, 12

A bit

input output

clk ~clk

clk~clk

Monday, February 27, 12

A bit
clk

AND

we

AND

we

input output

~clk

clk~clk

OR OR

~we ~we
Monday, February 27, 12

A bit
clk

AND

we

AND

we

input output

~clk

clk~clk

OR OR

~we ~we

Not really needed,
because if you are
not writing the flip

flop, then who
cares what ends up

in the first stage

Monday, February 27, 12

A bit
clk

AND

we

AND

we

input output

~clk

clk~clk

OR OR

~we ~we

Not really needed,
because if you are
not writing the flip

flop, then who
cares what ends up

in the first stage

And this isn’t really
needed either

because there is
enough parasitic

capacitance on the
gate and wire to

maintain the state

Monday, February 27, 12

A bit
clk

AND

we

AND

we

input output

~clk

clk~clk

OR OR

~we ~we

Not really needed,
because if you are
not writing the flip

flop, then who
cares what ends up

in the first stage

And this isn’t really
needed either

because there is
enough parasitic

capacitance on the
gate and wire to

maintain the state

The lower part isn’t
needed either for flip

flops that are
overwritten often
(pipeline latches)

Monday, February 27, 12

A bit
clk

AND

we

AND

we

input output

~clk

clk~clk

OR OR

~we ~we

Not really needed,
because if you are
not writing the flip

flop, then who
cares what ends up

in the first stage

At this isn’t really
needed either

because there is
enough parasitic

capacitance on the
gate and wire to

maintain the state

The lower part isn’t
needed either for flip

flops that are
overwritten often
(pipeline latches)

This last bit is
often grouped
together. i.e., if
you write a 64
bit register you
only need 1 gate
for the WE for

all of them

Monday, February 27, 12

A register

FF

Let’s take our flip flop from before
and use that as a basic component

clk, ~clk, we

Din Dout

FF

FF

FF

FF

clk, ~clk, we

Din Dout

Din Dout

Din Dout
Din Dout

regDin Dout

we

Monday, February 27, 12

A register file

Dout

ws

reg

reg

mux

reg

reg

Din

decoder

rs

Monday, February 27, 12

A register file

Dout

ws

reg

reg

mux

reg

reg

Din

decoder

rs
Real register files

use a pass-gate mux
-- or for very large
register files they
are actually SRAM
structures. But the

model here isn’t that
far off ...

Monday, February 27, 12

A register file

register file

Din

Dout0

Dout1

RS0
RS1
WS
WE

Monday, February 27, 12

ALU

+ - AND OR PASS-ANAND

MUX

A B A B A B A B A B A B

out

op_select

Monday, February 27, 12

The 351 Workhorse :-)

RIP

registers

ALU

RS0
RS1, RS2

Dout0 Dout1 Dout2

op_select

a b

Monday, February 27, 12

