
C

CSE 351, Winter 2012

Monday, February 27, 12

Why do we teach you C?

• C closely matches how computers really work
• No hidden “runtime”

• Can “trust” the compiler (sort of, more on this later)
• Helps you understand how systems work

• Still an extremely important language
• The Linux, Mac OS X, FreeBSD, and Windows kernels are all written in C
• VMware, Xen, KVM, and other hypervisors are written in C
• X windows is written in C
• The list goes on and on, but pretty much all major systems products are written in C

or C++ (which in the 90’s was C w/sugar, but is no longer)
• With one major exception: the UI on Mac OS X uses Objective-C -- but major

portions of the guts of the UI are still C (requiring some very badly written programs).
• Being proficient in C makes you more marketable

• The world has 10M developers, but only 1M C/ASM developers. Guess who gets
paid more? And, I would argue, has the more interesting job.

Monday, February 27, 12

From C to ELF

C code

cpp

preprocessed
C code cc1

assembly

gas object file

ld

ELF

Monday, February 27, 12

From C to ELF

C code

cpp

preprocessed
C code cc1

assembly

gas object file

ld

ELF

Monday, February 27, 12

From C to ELF

C code

cpp

preprocessed
C code cc1

assembly

gas object file

ld

ELF

.o.o.o .a

Monday, February 27, 12

C topics

• The preprocessor
• Hello world!
• functions
• constructs
• The type system
• libc,libm
• assembly translation

Monday, February 27, 12

cpp: The C preprocessor (invoke direct or “gcc -E”)

• cpp is an amazing thing (although Bjarne Stroustrup despised it)
• cpp is a preprocessor that is ran over your code before the C compiler actually gets it.

• cpp is essentially a text processor that inputs a text file and outputs another text
file.

• Responsible for numerous things in the C language, but of most importance:
• #include <file.h>

• /* insert the file “file.h” into this file before compilation */
• #define MY_FUNKY_CONSTANT (-42)

• /* translate all sightings of MY_FUNKY_CONSTANT into (-42) */
• #if MY_FUNKY_CONSTANT == (-42)

/* insert my random code into the file */
#else
/* insert some other random code into the file */
#endif

• __LINE__, __FILE__, __FUNCTION__ /* predefined macros */

Monday, February 27, 12

#define

• #define is quite useful and has both obvious and extremely obscure syntax
• #define A (1) /* define A to be (1) */
• #define MAX(a,b) ((a) < (b) ? (b) : (a)) /* return the max of a or b */
• #define DBG(x) printf(“%s = %d\n”, #x, x) /* see below */

DBG(my_int) is translated into: printf(“%s = %d\n”, “my_int”, my_int)
• #define CAT(x,y) x##y /* take symbols x and y and return the symbol xy */

• Also useful is:
• #undef SYM /* undefine the macro SYM */

Monday, February 27, 12

#define - advice

• Strive to NEVER have random numbers in your code.
• /* write-only code */

if (input_field & 0x7f == 0x20)
 return 0x20;

• /* code with staying power */
#define ASCII_LOWER_MASK 0x7f
#define SPACE 0x20
if (input_field & ASCII_LOWER_MASK == SPACE)
 return SPACE

Monday, February 27, 12

#define - Words of caution

• Caution: there is no type system in macros.
• Caution 2: macro replacement is not aware of operator precedence

• Always surround weak operators with () your macros
• /* BAD */

#define ARRAY_SIZE 1000+500
return ARRAY_SIZE * 5; /* I want the space for 5 arrays but that is not what I am
going to get */

• /* GOOD */
#define ARRAY_SIZE (1000+500)

• Always assume inputs to macros include weak operators
• /* BAD */

#define CALC_ARRAY_SIZE(a) a*5
• /* GOOD */

#define CALC_ARRAY_SIZE(a) ((a)*5)

Monday, February 27, 12

#define - kungfoo

• switch (input_value) {
#define CODE_GEN(x,y) case x: return y
#include “my_ops.template”
#undef CODE_GEN
}
// my_ops.template file
CODE_GEN(0x9, “backspace”)
CODE_GEN(0x20, “space”)
CODE_GEN(0x10, “newline”)
...

• Use the force carefully... this kind of code can be difficult to debug!

Monday, February 27, 12

Midterm topics - Midterm this Friday!

• Data representation
• integers, characters, strings, floats (a little)
• endianness
• Pointers
• arrays

• Bit manipulations in C
• x64 calling conventions

• Know how to write simple assembly routines correctly
• program sections

• NOT ON THE MIDTERM
• C stuff from Friday, today, and Wednesday

• (although, simple C things as described before are, and when we ask you
to write something in assembly, we may give a C representation of it).

Monday, February 27, 12

#if, #ifdef - conditional compilation

• Conditionally, based on statically knowable data include blocks of code
• #if SYM == 1

/* include this code */
#elif SYM == 2
/* include this code */
#else
/* include this code */
#endif

• #ifdef SYM
/* if the symbol SYM is defined in the preprocessor, include this code */
#endif

• Often you will see code like this in a header file:
• #ifndef _stdio_h

#define _stdio_h
/* rest of the header file
#endif

Monday, February 27, 12

#if - A Word of Caution

• Code with conditional compilation in it can be difficult to maintain over the
lifecycle of a project. For example, the following code will compile:
• #define SYM

#if !defined(SYM)
int some_garbage that wont compile;
#else
int some_perfectly_legit_code;
#endif

• This sort of code can “live” in a code base for a very long time before it is
discovered that the non-compiled branch of the code is broken. This is
known as “bit rot”

• Advice: Whenever possible don’t use conditional compilation. A single
branch comparison is pretty fast these days and you won’t save much
from avoid it. But there are plenty of legitimate uses for conditional
compilation, so when you have to use it, do so.

Monday, February 27, 12

Example

#define ARRAY_LENGTH (128)
#define LINEAR

int my_array[ARRAY_LENGTH];

int initialize_array() {
 int i;
 for (i = 0; i < ARRAY_LENGTH; i++)
#ifdef LINEAR
 my_array[i] = i;
#else
 my_array[i] = 0;
#endif
 }

1 "test.c"
1 "<built-in>"
1 "<command-line>"
1 "test.c"

int my_array[(128)];

int initialize_array() {
 int i;
 for (i = 0; i < (128); i++)
 my_array[i] = i;
 }

cpp

Monday, February 27, 12

Hello world!

#include <stdio.h>

int main(int argc, char *argv[]) {
printf(“Hello world!\n”);
return 0;
}

Monday, February 27, 12

Hello world!

#include <stdio.h>

int main(int argc, char *argv[]) {
printf(“Hello world!\n”);
return 0;
}

Contains the function
prototype for printf. More on

this alter, but a function
prototype is just a description

of the function, not the
implementation.

Monday, February 27, 12

Hello world!

#include <stdio.h>

int main(int argc, char *argv[]) {
printf(“Hello world!\n”);
return 0;
}

Programs that link with libc/crt0 have
a “main” function that is invoked after
libc has been initialized.

main(...) returns an integer, however,
most compilers will accept void
main(...) as well, but this is just for old
sloppy code. The value returned from
main is passed back to the shell. As
a matter of convention “0” typically
means “no error”.

Monday, February 27, 12

Hello world!

#include <stdio.h>

int main(int argc, char *argv[]) {
printf(“Hello world!\n”);
return 0;
}

main takes two arguments, a count of
the number of arguments in the argv
array and the argv array, which is a
pointer to an array of pointers to
strings.

Some compilers also support main(int
argc, char *argv[], char *arge[]) where
the 3rd argument is a list of
environment variables. (Not standard
as far as I know).

Monday, February 27, 12

Hello world!

#include <stdio.h>

int main(int argc, char *argv[]) {
printf(“Hello world!\n”);
return 0;
}

Call the function printf, which is
contain in libc to print the string “Hello
world!” followed by a newline to the
console.

Mildly important: \n means insert a “newline” in the
output. Sadly, there is not 1 definition of how a newline
is printed to a screen. On MS-DOS/Windows systems
it is the ASCII character 13 followed by 10. On Unix /
Mac OS X systems it is just the ASCII character 10.

By standard, “\n” appends an ASCII 10 to the string in
your program, and then code in libc either prints out
13/10 or 10 depending on the platform.

Monday, February 27, 12

Hello world!

#include <stdio.h>

int main(int argc, char *argv[]) {
printf(“Hello world!\n”);
return 0;
}

#include <stdio.h>

int main(argc, argv)
 int argc;
 char *argv[];
 {
 printf("Hello world!\n");
 }

ANSI C or C99 Old-school K&R C

Do not use this! But be
aware it exists! Lots of

old code out there!

Monday, February 27, 12

.h versus .c files

• .h is short for “header file”.
• usually .c files include header files, although header files often include

other header files (more on this later).
• A header file is just like any other C file.
• Typically a header file is used to specify the interface to a piece of code

contained in a .c file.
• There are exceptions to this:

• Header files that specify basic types
• Header files that specify interfaces to other source files (e.g. .s)
• Header files that specify only static inline functions

• Header files are included included into other files in two ways:
• #include <file.h> /* used to indicate system header search path */
• #include “file.h” /* used to indicate an exact path. e.g. “include/file.h” */

Monday, February 27, 12

header files - best practices

• Group and alphabetize your includes. Why? Because it will minimize
annoying source-control repository conflicts. e.g.
• #include <stdio.h>

#include <stdlib.h>
#include “my_project/include/a.h”
#include “my_project/include/b.h”

• Compilers almost always have a “-I” flag to add a path to the standard
include path. It has some use but can be abused easily. In general, I
recommend
• Use the -I flag as a “major” switch (switching target for example, like the

Linux kernel).
• Use the full path mechanism in other situations.

Monday, February 27, 12

Header files - best practices 2

• ALWAYS make sure your header file can be included more than once without
causing trouble. Do this in one of two ways:
• Old school:

#ifndef _my_header_h
#define _my_header_h
/* your normal stuff here */
#endif

• New way (and while not standard is almost universally accepted)
#pragma once
/* your normal stuff here */

• There are exceptions to this “include once” rule. Namely for cpp
generated code! Use this very very sparingly.

Monday, February 27, 12

header files - best practices 3

• Make your header files self-contained.
• BAD:

uint64_t my_function(my_funky_type x);
• GOOD:

#include <inttypes.h>
#include “my_funky_header.h” // where my_funky_type is defined
uint64_t my_function(my_funky_type x);
• Advantages are self-contained header files are easier to read and they

cannot have their meaning changed by improper usage!
• Expose as little as possible from your .c code to the outside world with a .h

file and nothing more.
• Declare as much as you can static and don’t add it to the header file
• Use opaque types (more on this later).

Monday, February 27, 12

Function declarations versus implementation

• In C you declare how to call a function and what it returns. This is done
separately from implementing it.
• The declaration is often, but not always, included in the header file for a

module.
• Example:

• int my_function(char *s); /* this is a declaration */
• int my_function(char *s) { /* this is the implementation */

 return atoi(s);
}

• static functions do not need a declaration. Once the implementation is “seen”,
the compiler automatically infers the declaration for all code after the
implementation.
• This is the one reason you may want a declaration for a static function. So

you can “use” it before the compiler has seen the implementation. e.g.
• static my_private_function(int x);

Monday, February 27, 12

Function declarations, part 2

• Use these flags with gcc:
 -Werror-implicit-function-declaration -Wstrict-prototypes

• The first one will prevent you from “leaking” a symbol global. It will be an
error to have a non-static function without a prototype. This is really more a
warning to you that you have an error in your thinking. Should the function be
static instead? Did you really not include it in the header file?

• The second one will force you to be very explicit about functions that take no
arguments.
• int foo() /* bad */
• int foo(void) /* good */

Monday, February 27, 12

Functions

• return_type function_name(argtype_one arg1, argtype_two arg2 /* more? */) {
 private_variable_to_invocation_instance private_var1;
 /* code */
 return whatever_I_mean_to_return;
}

• For example:
• int add2(int x, int y) {

 int z;
 z = x + y;
 return z;
}

•

Monday, February 27, 12

Function, 2

• Arguments are either passed by value or passed by reference.
• passed by value: void bar(int x); /* a COPY of x is passed to bar */

passed by reference: void bar(int *x); /* a POINTER to x is passed to bar */
• Some arguments are written as if they are passed by value, when in fact,

they are passed by reference -> namely, arrays are always passed by
reference.
• void foo(char a[10]); /* looks like it is passed by value, but it is not */
• void foo(char *a); /* it is basically the same as this modulo some type differences */

• Obviously, how arguments are used will change whether they are passed by
value or reference:
• int times2(int x) { return x * 2; }
• int times2(int *x) { return (*x) * 2; }

• Structures are passed by value unless you explicitly state otherwise.
• Be aware that these can be large...

Monday, February 27, 12

Function, 3

• In C99 it is possible (and in some places preferred) to declare your variables
wherever you like within a function. e.g.

• /* old school */
void my_function() {
 int i;
 for (i = 0; i < 10; i++) {
....

• /* new style */
void my_function() {
 for(int i = 0; i < 10; i++) {
....

• I have no substantive comments on which is better here. Note that in the old and
new styles you can declare variables at the top of any scope-opening block. E.g.,
even in old-school C this is legit:

• void my_function() { int x; for(x = 0; x < 10; x++) { int y; y = 2 * x;

Monday, February 27, 12

Functions 4

• Functions can optionally return a value.
• Best practice: make the return value meaningful or don’t use it at all.
• /* BAD */

int fire_me() {
 /* some code */
 return 0;
}

• /* GOOD */
void hire_me() {
 /* some code */
}

• Functions that always return the same value are (a) lame and (b) lead to
sloppy thinking in the future. Should this return value be stored? Should it be
checked? Think of the children (the developers that come after you to the
code base).

Monday, February 27, 12

Code blocks

• block of code: { }
• e.g.:
• if (x) {

 printf(“x not equal to 0!\n”);
 ++x;
}

• Kungfoo: the “,” “operator” can sometimes make compound expressions.
e.g, x = (y = 0, z = 1, x + y) /* x= the last expression in the () */
• You almost NEVER see code like this, and with good reason, it is

inscrutable. You should not write code like unless you absolutely have to.
The one case I know of is in some cpp generated code it can be helpful....

Monday, February 27, 12

if statements

• if (val) statement e.g.
• if (x)

 printf(“x is not equal to 0!\n”);
• if (x) {

 printf(“x is not equal to 0!\n”);
} else
 printf(“x is equal to zero!\n”);

• You often see this in old school code, and it is bad:
• if (x = foo()) /* bad form. Call foo() assign to x, then compare to 0 */

• This is so bad, most compilers now can warn you about this!
• if ((x = foo()) != 0) /* a little better form */
• x = foo(); if (x) /* much better */
• x = foo(); if (x != 0) /* best, it removes the cast from int to bool */

• Recommendation: avoid the implicit cast to bool if you can.
• if (x != 0) /* GOOD */
• if (x) /* eh */

Monday, February 27, 12

More on if and the ? short-hand

• Warning: Conditional operators in C short-circuit. E.g.:
• if (x && use_x(x)) { ... } /* is a very common programing technique. */

• if x == NULL then use_x will NOT be evaluated.
• if (x || foo()) { ... } /* foo() will NOT be invoked */

• C includes a useful, but easily abused short hand for an if statement, the ?
• if (x < y)

 m = x;
else
 m = y;

• m = (x < y ? x : y); /* personally I think this is bad form */
• Recommendation:

• Use sparingly. But can be very useful when calling a function. e.g.:
 printf(“resulting string: %s\n”, (s == NULL ? “null” : s));

Monday, February 27, 12

looping functions

• for (initialization; comparison; increment_expression)
• for(i = 0; i < n; ++i) { }
• i = 0;

loop_head:
/* loop body */
++i;
if (i < n) goto loop_head

• what does for(;;) do?

Monday, February 27, 12

while

• while(cond) { }
• Repeat the code after the while so long as the condition is true. e.g.:
• while (i < n) {

 printf(“i = %d\n”, i);
 ++i;
}

• while (i < n)
 do_my_stuff(i++);

• Some people write code like but they should be fired:
• while (i++ < n) printf(“i = %d\n”);
• QUIZ: what is printed out if i = 0 before the loop and n = 4 ?

• break; is a very useful construct to exit a loop from the middle:
• while (1)

 if (have_data())
 break;
 else
 sleep(1);

• You can break out of for and do/while loops as well...

Monday, February 27, 12

do/while

• do {
/* my code */
} while(cond);

• Do the code in the loop body at least once, and evaluate the condition on
whether or not to do it some more.

• Side note: You often see code like this in cpp macros:
• #define checkError(x) do { if ((x) != 0) { printf(“Error!!!\n” } } while(0)
• This is good form, and is so you can write code like this:

• checkError(x); /* that is with the trailing ; */

Monday, February 27, 12

goto

• C functions can include labels and you can goto them.
• int foo() {

 /* some code */
 if (error)
 goto error_out;
 /* more code */
error_out:
 return -1;
}

• Contrary to what you may have been led to believe, goto is not an inherently evil
act. BUT, it is best practices to only ever forward goto.

• A forward goto is often seen in systems code for just the purpose illustrated
above. As a way to “error out” of a function in a controlled way.

• If you are backward goto’ing, you should seriously think about why you are
writing code like that. Think of the children... use a loop construct instead.

Monday, February 27, 12

switch

• switch(integral_type) {
 case constant1:
 /* code */
 break;
 case constant2:
 ...
 default:
 /* if nothing above satisfies */
}

• e.g.:
switch(c) {
 case ‘c‘: printf(“user hit c!\n”); break;
 case ‘a‘: printf(“user hit a!\n”); break;
 default: printf(“unrecognized input: %c\n”, c);
}

Monday, February 27, 12

switch 2....

• If you forget the break then the statements fall through. Which can be very useful sometimes....

switch (c) {
 case ‘\t‘:
 case ‘\n‘:
 printf(“character is a tab or a newline!\n”);
 }

• Recommendation: It is often the case that you want to switch on a value that has a finite number
of constant possibilities. You could declare these constants as separate #defines (which is way
better than just random numbers in your code, which will fry your brain and get you fired), but
consider an enum. More on enum’s later, but the advantage is with an enum the compiler can warn
you about a missing case. e.g.:
 enum retValues { retVal1 = 1, retVal2 };
 void foo(enum retValues x) {
 switch(x) {
 case retVal1: printf(“retValue1!!\n“); break;
 }
 }

• The compiler will warn you “case retVal2 not handled”

Monday, February 27, 12

return

• int times2(int x) { return 2 * x; }
• In a lot of code you will see “return (2*x);” but this is just cruft. Nevertheless,

you will want / need to adhere to whatever the local style is.
• It is permissible to have multiple returns:

• char toupper(char x) {
 if (x >= ‘a‘ && x <= ‘z‘)
 return x - ‘a‘ + ‘A‘;
 return x;
}

• BUT! It can be difficult to debug code like this. In the short example
above, sure, but in larger functions, it can be subtle where it returns. So
use sparingly.

Monday, February 27, 12

Naming and conventions

• This is not part of C programing, but a useful topic nonetheless.
• There are 4 naming conventions in use in the world:

• random
• camelCaps
• bsd_style
• pszHungarianNotation

• You likely will not get to choose which convention you will use at first. Most
organizations have a “style guide” that developers must adhere to.

• Personally, I prefer self-documenting code, and as a consequence, I like long
names:
• uint64_t vtop(uint64 a); /* bad, what does this function do again? */
• uint64_t virtual_to_physical(uint64 in_address);

• People can become irrationally passionate about these things...

Monday, February 27, 12

Comments

• Old-school comments:
/* start comment
 it can go on for many lines
 it ends here.... */

• New-style one line comments (borrowed from C++)
 // everything from here to the end of a line is a comment

• These days almost all compilers support //

• Personally I am not a fan of comments (see previous slide on descriptive
function names). Just write clear code with good names. Comments tend to
be bad because they go “stale”. Code changes, but no one edits the
comments.
• But, comments that describe the non-obvious or the rational for something

are useful.

Monday, February 27, 12

Functions, summary and best practices

• Large functions are not a sin, code duplication is.
• Even near-duplication is bad. Whenever two or more blocks of code look

similar, consider a function to support them. Handle the differences with
arguments and if statements.

• If a function returns a value it should be stored or checked.
• Functions should be private (static) unless they are called elsewhere
• Use descriptive naming conventions
• Use consistent formatting style

• And to make your life easy, don’t invent your own. Just write how emacs
(or whatever) wants you to write.

Monday, February 27, 12

C type system

• Yes, C has a type system. It is pretty weak.
• Core types:

• char, short, int, long, float, double
• modifiers: signed, unsigned, const, *, ()

• The * or “is a pointer” can apply to itself: e.g. int **i; // pointer to a pointer to an int
• The () or function pointer declaration is tricky, as we’ll see in a second
• non-standard but long held extensions: long long, long double

• Types can be grouped into arrays
• e.g.:

• char s[128];
• int matrix[10][10];

• Arrays are 0 based and row major:
• char s[128]; s[0] = 0; s[128] = SILENT DATA CORRUPTION :-)

• In standard C array bounds are static. e.g. char s[128]; gcc permits a non-standard
extension of variable length declaration: char s[length];

Monday, February 27, 12

Pointers to functions

• Suppose you have a function like:

 int foobar(char *s) { ... }

• You can declare a pointer to a function for functions of that type like this:

 int (*function_ptr)(char *s);

• And set it like this:

 function_ptr = foobar;

• And use it like this:

 function_ptr(“hi!”);

Monday, February 27, 12

Pointer arithmetic

• Arithmetic on pointers occurs on the integral of size of the type they point to.
• e.g. int *x = 0; ++x; // now x = 4!

• This is generally what you want, but not always.
• Specifically in systems code you often see code like this:

 unsigned char *b_ptr = (unsigned char *) i_ptr;
 b_ptr -= 0x80000000;
 i_ptr = (int *) b_ptr;

• This sort of code also often appears when you are reading or writing
specific file formats.

Monday, February 27, 12

New types can be created

• A new type can be created:
• typedef old_type_name new_type_name;

• e.g.: typedef unsigned long long uint64_t;

• New types are very useful for:
• size-specific datatypes (uint64_t, etc)
• function-pointer types (simplifies a particularly ugly declaration that we’ll see shortly).
• short hand (although this can be taken to far)

• Advice: A lot of runtime environments (Windows, ...) like to declare pointer-to typedefs.
For example, suppose there is a type “my_type”, in these environments there is also
generally a type “Pmy_type” (or ptr_my_type or whatever the naming convention in use
is). This lets you write code like:

• Pmy_type pointer_to_my_type;
• personally I prefer: my_type *my_type_ptr;

Monday, February 27, 12

sizeof

• Types have a size. sizeof returns the size of that type in bytes.

• sizeof(int) = 4
• sizeof(double) = 8
• sizeof(int *) = 8 // on 64 bit systems
• sizeof(int *) = 4 // on 32 bit systems

• sizeof also works on de-referenced pointers (which will not be dereferenced to get the
size. e.g.:

int *x = NULL;
printf(“sizeof something %d\n”, sizeof(*x)); // this will not crash! it just prints
// “sizeof something 4” is printed

• sizeof is computable at compilation time. It is not a runtime computation. The
compiler converts it (ultimately) to a number.

Monday, February 27, 12

static

• C has a keyword “static” which is used for two purposes:

• Purpose 1: Making things private to a module.
• By default, variables declares outside of a function, and functions

themselves become global symbols in the output object file. By
prefixing their declaration with “static” they become private. eg.
• static int x = 0;
• static int foobar(int z) { }
• static inline foo(...) { }

• Purpose 2: Making local variables to a function persistent across function
invocation.
 void foobar() { static int x = 0; ++x; printf(“%d “, x); }
 // output: 0 1 2 3 4 5 6 ...

Monday, February 27, 12

struct’s

• struct is among the most useful things in the C type system. A struct creates a
new type which is a collection of types:

 struct new_type_name {
 int x;
 int y;
 };

• You then declare a struct like:

 struct new_type_name my_struct;

• And use it like:

 my_struct.x = 1;
 my_struct.y = my_struct.x + 1;

Monday, February 27, 12

Pointers to struct’s

• Suppose you have:
 struct new_type_name {
 int x;
 int y;
 };

• And then you declare:

 struct new_type_name actual_storage, *ptr_to_actual_storage;

• And then go:
 ptr_to_actual_storage = &actual_storage;

• You then access x and y not with ‘.’ but with ‘->‘

 ptr_to_actual_storage->x = 1;
 ptr_to_actual_storage->y = ptr_to_actual_storage->x + 1;

• This syntax is to make it clear what is being de-referenced when a struct contains a pointer.
e.g. struct f {int *i} *p; does *p.i dereference p or i? To avoid this, the -> syntax was invented.

Monday, February 27, 12

More on struct’s

• Warning: Unless you say otherwise, the compiler does not have to lay a
struct out in memory the way you wrote it in your code. E.g.:

 struct my_struct {
 char s1;
 char s2;
 int i1;
 };

• Question: how big is sizeof(struct my_struct) ???

Monday, February 27, 12

More on struct’s

• Warning: Unless you say otherwise, the compiler does not have to lay a
struct out in memory the way you wrote it in your code. E.g.:

 struct my_struct {
 char s1;
 char s2;
 int i1;
 };

• Question: how big is sizeof(struct my_struct) ???
• Answer: it varies. Depending on how you set the compilation flags it can

vary from 6 to 8 bytes (or more if you work at it).

Monday, February 27, 12

struct’s and alignment/packing

• default layout: [s1, s2, padding, padding, i1, i1, i1, i1]
• -fpack-struct [s1, s2, i1, i1, i1, i1]

• Generally speaking you do not need to think about this for struct’s used purely to
communicate between different parts of your own application. But when a struct
needs to be passed to the operating system, or another application or you need to
write a struct to match a file-format or something you see over the network, then
packing & alignment matter.

• -fpack-struct is generally frowned upon, use #pragma’s instead:

#pragma pack(push, 1)
struct my_struct { ... };
#pragma pack(pop)

• You can neglect the push/pop but then everything after the pack(1) directive
becomes packed. Not cool...

struct my_struct {
 char s1;
 char s2;
 int i1;
 };

Monday, February 27, 12

struct and typedef

• A very common programming form you see in code is:

typedef struct _my_struct {
 int x;
 int y;
 } my_struct;

• which simultaneously declares a struct of type _my_struct and a typedef to that struct
of name my_struct. This lets you write code like:

 my_struct z; z.x = a; // observe, no struct in front of it!

• Note that the typedef is NOT VALID until the end of the statement. So you need to use
the struct name inside the struct declaration:

typedef struct _list {
 struct _list *next;
 } list;

Monday, February 27, 12

union’s

• A union is declared like a struct, but means something quite different!
union my_union {
 int i;
 char c[4];
};

• sizeof(struct my_union) = 4

• Memory is [i/c[0], i/c[1], i/c[2], i/c[3]] that is, each element of the union
shares the same memory.

• The size of the union is the size of the maximum element in the union.

Monday, February 27, 12

union’s are very useful.

• e.g.:
 union int_type { unsigned int x; unsigned char c[4]; };

 switch_endian(unsigned int y) {
 union int_type z1, z2;
 z.x = y;
 z2.c[0] = z1.c[3];
 z2.c[1] = z1.c[2];
 z2.c[2] = z1.c[1];
 z2.c[3] = z1.c[0];
 return z2.x;
 }

• Also useful for when two concepts are mutually exclusive in reality and you want to save space:
 struct cpu_data {
 enum cpu_type the_type;
 union cpu_data_raw {
 struct amd {

 } amd;
 struct intel {

Monday, February 27, 12

struct’s and bitfields

• In C it possible to say “this thing only has N bits” e.g:

 struct rflags {
 uint64_t cf:1;
 uint64_t _dummy1:1;
 uint64_t pf:1;
 uint64_t _dummy0:1;
 uint64_t af:1;
 // etc
 };

• Warning: What does the “uint64_t” mean here? The answer is it depends! On
MSVC the default is the type of the bitfield has meaning. In C99/gcc the type
of the bitfield regardless of what you put there is int. This is a very subtle
distinction that can lead to bizarre bugs. GCC includes a flag “-mms-bitfields”
to make it behave like MSVC in this case.

Monday, February 27, 12

opaque types

• Opaque types are very useful.
They allow you to force people
to use the interface to a module.

• There is not explicit support for
opaque types in C, it is all in how
you use the tools provided.

// header.h
struct my_data_type {
 int whatever;
};

void do_something(
 struct my_data_type *t);

BAD

// header.h
struct my_data_type;

struct my_data *allocate_my_type();
void do_something(
 struct my_data_type *t);

// header.c
#include “header.h”
struct my_data_type {
 int whatever;
};

void do_something(
 struct my_data_type *t) { }

GOOD

Important: this is more important than it
looks, and is what separates a “level 1”

from a “level 2” SDE (among other things)

Monday, February 27, 12

Caution: The C compiler believes you

// header1.h

struct my_type { int x; };

// header2.h

struct my_type { double x; };

// file2.c
#include “header1.h”

struct my_type *allocate() {
 struct my_type *p;

p = malloc(sizeof(*p) * 10);
}

// file2.c
#include “header2.h”

void silently_corrupt_data() {
 struct my_type *p;
 p = allocate();
 for (int i; i < 10; i++) {
 p[0] = 0;
}

Monday, February 27, 12

Caution: C++ has a bool type

• C used to have no such thing as bool type
• Although it is quite common to make one:

typedef int bool;
#define true 1
#define false 0

• And some compilers like to implement one for you...

• C++ has a bool type.
• BUT THIS NEED NOT ALWAYS BE IMPLEMENTED IN THE SAME WAY.

• Some compilers use 1 byte
• Some compilers use 4

• C++ code can link against C code...

• And you guessed it... this story doesn’t end well... . there is a gcc flag -mone-byte-bool to
“make things compatible” if you need it.

Monday, February 27, 12

C types - summary

• C has a fairly straightforward type system.
• No inherentance, etc..

• Although some folks try really hard to fake it with unions, void *’s, etc.
• You should exploit the type system for all it is worth.

• Strong typing reduces subtle programming errors.
• Strong typing makes code more maintainable
• Avoid void * unless you really have to use it.

• Use opaque types to enforce the use of module interfaces
• Some very difficult to find bugs lay in the darker shadows of the type system

• type’s for union fields...
• linking against C++ code...
• structure alignment...
• duplicate definitions of things...

Monday, February 27, 12

“Standard” libraries

• For all practical purposes, all user mode
programs use a library “libc” (pronounced
“lib c”).

• The phrase “link against” means to include
the library during the linking phase.

• But keep in mind libc != C it is just a blob
of bits with functions and variables you
can call

• When you write a device driver or an
OS kernel, you would not want to link
against libc.

• libc is “almost standard” but there are
variations in the header file layout and the
darker corners of the semantics between
systems and versions.

• On MSFT platforms the library is named
MSVCRT for reasons only Redmond
knows...

C code

preprocesse
d C code

assembly

object file

ld

ELF

.o
.o

.o .a

header file definitions
inserted here

Actual binary code
inserted here

Monday, February 27, 12

libc

• libc provides numerous useful functions for manipulating data in your own
program. It also provides nice wrappers for communicating with the
operating system (on POSIX/Unix and to a limited extent Windows). And it
provides it’s own “higher level” interface to the operating system I/O.

• Most useful for you to know:
• memory allocation (malloc/free)
• string manipulation (strcpy, strcmp)
• file I/O (fopen, fwrite, fread, fprintf, printf...
• conversion (atoi, atof, ...)
• direct POSIX system calls (open, write, read, ...)
• time functions (gettimeofday, ctime, ...)
• assert (not exactly part of libc, but part of the header files)

Monday, February 27, 12

libc - continued

• To properly use these functions you sometimes have to call them in the
correct order (e.g. fopen before fwrite) and you must include the correct
header file.
• If you do not, and you don’t have -Wall on your compiler flags, your

program will compile, but all your arguments will be passed as int’s (which
is the “C way”)

• Which header file you ask?
• It depends... you need to look it up.

• libc has evolved over time and it varies from system to system.
• It is largely “standard enough” that variations can be dealt with by

crafting the program to a handful of variations
• Ever wonder what ./configure (autoconf) was all about? It is partly in

response to this...
• On unix systems, do “man function” to find out. Try it: “man malloc”

Monday, February 27, 12

libm, so close, yet so far...

• For historical reasons (back before sophisticated linking and back when
processors had optional floating point units!), the math functions of “libc” are
contained in a different library “libm”

• libm contains your basic math operators:
• cos
• sin
• tan
• etc...

• As an aside: a lot of OS kernels disallow floating point. They do this because
floating point is expensive to context switch.

Monday, February 27, 12

Global variables

• file1.c
int x; // globally visible to the linker variable x

• file2.c
extern int x; // tell the C compiler that somewhere at the link stage a symbol
 // of name x and type int will exist.

• Typically the “extern” lives in a header file. It is legit to have code like this:

extern int x; // somewhere in the future x will be resolved....
int x = 1; // and here in this module is where it will be. Oh and initialize it to 1

• NOT ok:
• extern int x = 1;

Monday, February 27, 12

malloc & free

• In C you can dynamically allocate regions of memory. You do this by calling “malloc”
• void *malloc(size_t size);

• Notes:
• C has no idea a region of memory is a certain type of thing (int’s, strings, etc). It is

up to you the developer to know that
• Unlike Java, objects must be explicitly freed otherwise your program will have

memory leaks.
• free(void *)
• While this appears painful, it isn’t so bad, and enforces good programmer

discipline
• Handling forgotten (and duplicate) free’s isn’t so hard. You:

• Roll your own protected versions of malloc/free to look for leaks
• Use electric fence or other tools like it
• Use good discipline, specifically pools of memory and implement a policy

where by all objects within a pool have to be free’d at the time pool is no
longer in use.

Monday, February 27, 12

malloc & free

• Advice: Make it clear who “owns” a chunk of memory in your code. That
module should be responsible for the conceptual task of allocating it, and
freeing it.
• This is separate from the mechanical task of allocating it. For example, a

module may provide an interface through an opaque type, and to do so
would provide functions like: allocate_object() and free_object(object *). It
is not the module that owns the object, it is the module that is calling
allocate/free

• At a minimum wrap your malloc / free calls like so:
extern int allocs;
#define malloc(x) (++allocs, malloc(x))
#define free(x) (--allocs, free(x))

• Then at the end of your program print out allocs. If != 0 you have a
problem.

Monday, February 27, 12

C has very little idea about multi-dimensional arrays

• int matrix[4][20]; // ok, but not dynamic...
• int *matrix[20]; // not what you think!
• int matrix[][20]; // NOT ok
• int matrix[20][]; // NOT ok
• int matrix[][]; // Definitely NOT ok
• int **matrix; // hmm, a good start...

• To allocate a dynamically sized array you need to think about it not as one large block of
memory. Instead, think about it as an array of pointers, each of which points to a block of
memory.

int **m, i, j;
m = malloc(sizeof(int *) * ROWS);
for (i = 0; i < ROWS; i++)
 m[i] = malloc(sizeof(int) * COLUMNS);
for (i = 0; i < ROWS; i++)
 for(j = 0; j < COLUMNS; j++)
 m[i][j] = 0;

• Of course, this makes free’ing it a bit more work.

Monday, February 27, 12

How to learn to write in C on your own

• Write something in it! Try something. Standard interview question are, write,
in C the following functions:
• atoi
• insert into a balance tree
• reverse a singly linked list

• Way-back-when when I wanted to learn a new language I would write a text
editor. A simple text editor is ~ 3000 or so lines of code.

• To master a language takes time. You will learn how to write better code
throughout your lifetime from your peers.

Monday, February 27, 12

C summary

• C is a language that is very close to the hardware
• Systems software is most often written in it because there’s nothing hidden
• The “c language” as most people think about it is actually made up of three

parts: the preprocessor, the language it’s, and the “standard libraries”
• C has a standard but it is only loosely followed

• Programs are often written to compile/execute on only one platform, or
have explicit cross-platform support

• While the product of a C compiler is largely predictable, and hence easy for
software developers to reason about, it is not always so and there are subtle
issues
• More on this near the very end of the class when we talk about threads...

Monday, February 27, 12

Next up: Diving back down the rabbit hole

• What it means to execute
• x64 Assembly part 2
• What a process is
• The cache hierarchy
• etc, etc, etc...

Monday, February 27, 12

