
Floating point - summary 1

• More in section
• Numbers are represented as [Mantissa]*(2**[Exponent])

• IEEE 754
• Mantissa is normalized sign/magnitude; normalization means the number always

has a leading 1 (e.g. 1.00101) and that leading 1 is dropped.
• exponent uses some crazy base format (value = exponent - base).

• Exponents at the extent of the range (0x0...0 and 0xf...f) are special and
represent unusual numbers:

• Sign=0, Exp=0, Significand=0 = +0
• Sign=1, Exp=0, Significand=0 = -0
• Sign=0, Exp=111..1, Significand=0 = +infinity
• Sign=1, Exp=111..1, Significand=0 = -infinity
• Sign=0/1, Exp=111..1, Significand = 1????? = “quiet” NaN
• Sign=0/1, Exp=111..1, Significand = 0??1?? = “signaling” NaN

• There are other formats. Most of these are internal to a processor, but not all.

Monday, February 6, 12

Floating point - summary 2

• Your view as a software developer is typically:

• float = 32 bit FP value

• double = 64 bit FP value

• avoid: long double = non-standard FP value. Varies between 64, 80 and 128 bits

• Unless you need IEEE 754 standard FP, then you get “whatever” FP

• On Intel x86 machines this means that computations that never leave the processor are
computed with greater precision than the values. e.g.:

• float x = MAX_FLOAT, y = MAX_FLOAT, z; z = x * 2 - y;

• IEEE 754: z = +infinity Intel: z = MAX_FLOAT or +infinity (depends).

• Typically IEEE 754 is a tad slower because of all the corner case implementation details
supported.

• Where you care is at the edges, in particular how things round. Numerically stable
algorithms are designed to work with the particular rounding modes IEEE FP provides.

Monday, February 6, 12

Floating point - summary 3

• Advice #1: If you end up writing a lot of FP code, you probably should buy
“Numerical Recipes in C”, which is an atrocious book where the
implementations are badly reformatted FORTRAN code, but it is the defining
text on this.

• Advice #2: If you are writing code like: if (a == b) and a and b are FP values
then you probably have an error in your thinking. e.g.:
• double a = 1.0 / 3.0, b; b = a * 3.0; if (a == 1.0) { } // BROKEN
• Consider instead: if (is_close(a, b, epsilon)) { }

Monday, February 6, 12

Checkpoint

• So far in class we have:
• Provided a broad overview
• Focused a lot on data representation

• Dwelled extensively on integers (2’s complement)
• Briefly mentioned how bits are mapped to characters (ASCII, Unicode)
• Discussed how strings are stored in C and alternative approaches
• Did a whirlwind tour of fixed and floating point

• Labored over a few C eccentricities
• pointers
• bit manipulations

• Things I hope you should be able to do by now:
• Write the function int atoi(const char *s)

• This was Corensic’s standard interview question and by and large only 1/5th of the
people we interviewed, representing 1/500th of the resumes we received can do
this correctly.

Monday, February 6, 12

Up next: the HW/SW interface

int atoi(char *s) {
 int v = 0, sign=1;
 if (*s == ‘-’) {
 sign=-1;
 ++s;
 }
 while (*s &&
 _is_number(*s)) {
 v = v * 10 +
 _ascii_to_digit(*s);
 ++s;
 }
 return sign * v;
}

Your view as
the developer

_atoi:
Leh_func_begin1:
 pushq %rbp
Ltmp0:
 movq %rsp, %rbp
Ltmp1:
 subq $32, %rsp
Ltmp2:
 movq %rdi, -8(%rbp)
 movl $0, -20(%rbp)
 movl $1, -24(%rbp)
 movq -8(%rbp), %rax
 movb (%rax), %al
 cmpb $45, %al
 jne LBB1_2
 movl $-1, -24(%rbp)
 movq -8(%rbp), %rax
 movabsq $1, %rcx

gcc,
cl

A “human
readable” view

of the ISA
 55 48 89 e5 48 83 ec 20
48 89 7d f8 c7 45 ec 00
 00 00 00 c7 45 e8 01 00
00 00 48 8b 45 f8 8a 00
 3c 2d 75 1c c7 45 e8 ff ff
ff ff 48 8b 45 f8 48
 b9 01 00 00 00 00 00 00
00 48 01 c8 48 89 45 f8
 eb 3c 8b 45 ec 6b c0 0a
48 8b 4d f8 8a 09 0f be
 c9 30 d2 89 cf 89 45 e4
88 d0 e8 00 00 00 00 89
 c1 8b 55 e4 01 ca 89 55
ec 48 8b 4d f8 48 ba 01

gas,
MASM/

ml64
+
ld,
link

As the
processor

sees it

Monday, February 6, 12

x86 / x64 ISA

• Why do we study x86 / x64 in this class?
• Like it or not, it is the dominant desktop/server/laptop architecture
• It is not simple. It is burdened by legacy:

• x64 (64 bit) is based on x86 (32 bit) which is based on x86 (16 bit) which
was designed to supplant the 8080 (8 bit).
• 8080 is not 8086, but lives on! Many a microwave, thermostat and

other tiny computer uses this ISA that dates from 1974!
• To this day, 64 bit chips from Intel/AMD start out in an 8086

compatibility mode (euphemistically called “real mode”)
• There is also an orphaned offshoot (the 80286) which is a 16 bit

“protected mode” 8086 that is still supported.

Monday, February 6, 12

x86 / x64 ISA in the market place

• AMD and Intel have a curious history
• In the 80’s and 90’s there were a few “clone” CPU vendors, AMD, Cyrix, Transmeta, Chips and

Technologies, IBM (the only licensed clone)
• AMD originally made parts that were ISA and pin-compatible replacements for Intel parts.

• Massive lawsuits ensued.
• Eventually AMD and Intel reached a cross-licensing de taunt through the 486 generation, at

which point AMD and Intel started to go their separate ways
• This means the “core” 32 bit x86 architecture is the same, and they vary along the

edges: vector instruction set extensions, virtualization extensions, etc; and are no longer
pin compatible.

• In the late 90’s it was apparent to everyone x86 had to go 64 bits.
• Intel developed their own ISA extension, IA-64 (otherwise known as Itanium) which

didn’t look anything like x86/IA-32. Itanium chips could run IA-32 or IA-64
• AMD went to MSFT and said “what do you want?”. Thus was born AMD64 (or x86-64

or just x64). IA-64 never caught on; 2003/04 Intel licensed x64 from AMD.
• AMD and Intel reached another de taunt recently (with a ~ $1B payout to AMD). But the companies

continue to go their separate ways. Thus the “core ISA” x86 & x64 is almost but not entirely the
same, the extensions are not.

Monday, February 6, 12

Architecture v Microarchitecture

• Architecture or Microarchitecture?
• Main memory?
• Virtual memory?
• TLB?
• Registers?
• Register usage?
• Caches?
• Instructions?

Monday, February 6, 12

Architecture v Microarchitecture

• Architecture or Microarchitecture?
• Main memory? Architecture
• Virtual memory? Architecture
• TLB? Microarchitecture
• Registers? Architecture
• Register usage? Convention (mostly), Architecture (some)
• Caches? Microarchitecture (more or less)
• Instructions? Architecture

Monday, February 6, 12

x64 ISA

• Two types of memory

• Registers

• Direct access for data: ADD %rax, %rdx // rdx = rdx + rax; rflags....

• Indirect access for flags: CMP %rax, %rbx // rflags.zf = (rax == rbx), ...

• Main memory

• Directly accessed: MOV *%rdx, %rax // rax = memory[rdx]

• Stack accessed: POP %rax // rax = memory[rsp]; rsp = rsp + 8

• Generally speaking there are 3 regions of memory for your process: code,
data and stack. But as previously discussed, there tends to be multiple
disjoint code and data locations, and each thread has its own stack.

Monday, February 6, 12

x64 ISA

• Three broad classes of instructions:
• Moving data (mov *%rdx, %rax)
• Computing on data (add %rax, %rdx)
• Branching (CMP %rax, %rdx; JE location)

• On x86/x64 these classes are not disjoint, e.g.:
• ADD *%rdx, %rax (rax = memory[rdx] + rax)
• SUB %rdx, %rax; JLZ location (SUB sets the flags JLZ jumps on)

• There are more instructions than these classes:
• Instructions to access the OS (e.g. INT and SYSCALL)
• Instructions the OS uses to manipulate processes (e.g. lgdt)
• Instructions the OS uses to access “miscellaneous potentially non standard

junk” (e.g. wrmsr)
• Instructions to access the performance monitoring hardware (e.g. rdtsc)
• etc, etc, etc

Monday, February 6, 12

x64 ISA

• Almost true: one only manipulates small pieces of data:
• Integers, 1, 2, 4, 8 bytes

• These data types are referred to as “b, s, l, and q” in gcc and “BYTE,
WORD, DWORD, and QWORD” in MASM land.

• E.g.: gcc: movq *%rdx, %rax
• E.g.: MASM: MOV rax, QWORD PTR [rdx]

• Floating point values, 32 and 64 bit values (and the non standard 80)
• x64/x86 supports numerous accessors that break this

• x64 can do memcpy in 1 hardware instruction
• x86/x64 supports “vectors of” integers
• Certain OS instructions directly manipulate hardware tables

Monday, February 6, 12

x64 ISA

rax
eax

ax
al

This is all the same
register!

16 registers:
rax, rcx, rbx, rdx, rsp, rbp, rsi, rdi, r8, r9, r10, r11, r12, r13, r14

These registers are 64 bits wide, but it is
possible to access smaller fields within them:

It is also possible to access other subfields (e.g. ah = top half of ax), but the
need to do so is low and if you have to, you’ll have to look it up anyway :-)

Why 16 registers?
Monday, February 6, 12

Not all registers are created equal...

• For some operations, RAX is an implicit destination register. For others, such
as multiply, RDX:RAX is.

• RCX is often an implicit source/destination register meaning “count”
• RSP is an implicit source/destination register for “top of stack” which, by the

way, is at the bottom of the stack in memory :-)
• RBX and RDX have more flexibility in the address computation department
• RSI is an implicit source/destination register meaning “source index”
• RDI is an implicit source/destination register meaning “destination index”

• These are not conventions, these differences are baked into the ISA

• Why does this exist?

Monday, February 6, 12

x64 Register conventions

• Conventions != ISA They are strongly worded suggestions

• Why have conventions?

• Codifies “best practices”

• So that software from different vendors can interact

• The conventions that most impact your life surround procedure call and
system call invocations (but there are more!). We’ll focus a lot on
procedure calls in this class, and once you get that, the system call stuff
will be trivial.

• x86 has no conventions -- period. Object code compiled with one vendor’s
compiler cannot successfully call/link with object code compiled with
another vendors compiler.
• Even code from the same compiler cannot link to itself if it is not compiled

with the same flags! (e.g. __fastcall)

Monday, February 6, 12

x64 Calling Conventions

• x64 imposes 2 broad calling conventions

• One for Unix-based OS’s such as Linux, FreeBSD, Mac OS X, etc

• One for Windows based OS’s
• Why are there 2? I have no idea..

• To make this tractable, we are going to focus ONLY on Unix-based systems. But please please
be aware that it is very different on Windows based ones. If you write code for that platform
you will have to look it up. Search for “x64 API calling conventions” or go here
http://x86-64.org/documentation/abi.pdf

• What comprises a calling convention?

• Passing arguments to the procedure

• Obtaining the return value

• Assurances about state that is preserved
• Assurances about state that may not be preserved

• Subtlies of stack usage

• Warning: Experience has shown this is a deceptively difficult topic. It is going to sound simple, but
many many people go into the weeds here...

Monday, February 6, 12

http://x86-64.org/documentation/abi.pdf
http://x86-64.org/documentation/abi.pdf

•PLEASE SIT CLOSE
•SKY DECIDED 1-5am
WAS PLAY TIME :-)

Monday, February 6, 12

x64 Calling conventions - Part 1

• The first 6 integer arguments to a function are passed through registers:
• uint64_t foobar(uint64_t a1, uint64_t a2, uint64_t a3,

 uint64_t a4, uint64_t a5, uint64_t a6) { return 10; }
x = foobar(1, 2, 3, 4, 5, 6);
• When calling the function:

• rdi = 1 rsi = 2 rdx = 3 rcx = 4 r8 = 5 r9 = 6
• When returning a value from the function:

• rax = 10
• Even if the type is less than 64 bits:

• char foobar(char x, int64_t y) { return ‘1’; } foobar(‘2’, -3);
• edi = ‘2’ and rsi = -3

• Note: notice how the “char” was extended to only 32 bits! This is a C
thing. Not an x64 calling convention thing.

Monday, February 6, 12

x64 - Calling Conventions - Part 2

More than 6 arguments can be passed through registers if they
are of different types. The remainder need to go on the stack

Monday, February 6, 12

Some registers must be
preserved by the called
function

Just as important,
some registers must
be assumed to be
clobbered.

WARNING: This is a huge source of
confusion for people. Read that
phrase in bold again slowly.

Monday, February 6, 12

x64 Calling Conventions - Example

uint64_t add2(uint64_t x, uint64_t y) {
 return x + y;
}

.text

.globl add2

add2:
pushq %rbp
movq %rsp, %rbp
movq %rdi, %rax
addq %rsi, %rax
popq %bp
ret

This is a called a pseudo directive. “.text”
is the Unix way of saying “this is code”

The “.globl” pseudo directive (yes it is really
spelled that way) is a way of telling the
assembler to mark the symbol as “global”
for the purposes of linking. This means the
symbol will be visible outside of the current
object file.

Monday, February 6, 12

x64 Calling Conventions - Example

uint64_t add2(uint64_t x, uint64_t y) {
 return x + y;
}

.text

.globl _add2

_add2:
pushq %rbp
movq %rsp, %rbp
movq %rdi, %rax
addq %rsi, %rax
popq %bp
ret

Not all systems (Linux does not for now),
Mac OS X does. Windows does. Etc.,
prefix C symbols with another symbol.

They do this to avoid name collisions.
Historically the prefix character has been “_”
but some systems have used “.”, or “__”
and others have used “$” either at the
beginning or the end.

The “reality on the ground” as a software
developer is you just need to figure out what
your tool chain does and do that. There is
no standard.

Monday, February 6, 12

x64 Calling Conventions - Example

uint64_t add2(uint64_t x, uint64_t y) {
 return x + y;
}

.text

.globl add2

add2:
pushq %rbp
movq %rsp, %rbp
movq %rdi, %rax
addq %rsi, %rax
popq %rbp
ret

The pushq/popq that surround this function
are there to maintain the “frame pointer”. A
Frame pointer is not part of the calling
conventions, but rather it is a feature of the
runtime environment. It can be changed
by compiler flags, but on Mac OS X & Linux
systems a frame pointer is used by default
(although on Linux systems it can get
optimized away). Inside the Windows 64
kernel no frame pointer is used. Inside
Windows user land, a frame pointer is used
for native code.
A frame pointer aids the debugger (it
facilities easier stack unwinding), and it can
make assembly programming easier.

Monday, February 6, 12

x64 Calling Conventions - Example

uint64_t add2(uint64_t x, uint64_t y) {
 return x + y;
}

.text

.globl add2

add2:
pushq %rbp
movq %rsp, %rbp
movq %rdi, %rax
addq %rsi, %rax
popq %rbp
ret

uint64_t test() {
 return add2(3, 4);
}.text
.globl test

test:
pushq %rbp
movq %rsp, %rbp
movl $3, %edi
movl $4, %esi
call add2
popq %rbp
ret

Monday, February 6, 12

x64 Calling Conventions - Example

uint64_t test(uint64_t r) {
 return add2(3, 4) + r;
} .text

.globl test
test:

pushq %rbp
pushq %rdi
movl $3 %edi
movl $4 %esi
subq $8, %rsp
call add2
add $8 %rsp
popq %rdi
add %rdi, %rax
popq %rbp
ret

What is going on here?

Monday, February 6, 12

x64 Calling Conventions - Example

uint64_t test(uint64_t r) {
 return add2(3, 4) + r;
} .text

.globl test
test:

pushq %rbp
pushq %rdi
movl $3 %edi
movl $4 %esi
subq $8, %rsp
call add2
add $8 %rsp
popq %rdi
add %rdi, %rax
popq %rbp
ret

On x64 there is an
expectation that the stack
pointer is a multiple of 16,
plus 8, on entry to a
function.
i.e., (%rsp + 8) mod 16 = 0

Monday, February 6, 12

x64 Calling Conventions - Example

uint64_t test(uint64_t r) {
 return add2(3, 4) + r;
} .text

.globl test
test:

pushq %rbp
pushq %rdi
movl $3 %edi
movl $4 %esi
subq $8, %rsp
call add2
add $8 %rsp
popq %rdi
add %rdi, %rax
popq %rbp
ret

rbp

rdi

dead space

@ after call0x????8

Monday, February 6, 12

Checkpoint!

• Memory, registers
• Intro to basic ops: Memory interfacing, arithmetic, control
• Dwelling on calling conventions
• Up next: More examples that become progressively more complex

Feels like it’s about time for a
midterm doesn’t it?
How about Feb 10th.

Topics: data representation, assembly,
and limited C programming

Monday, February 6, 12

A slightly more complex example

#include <stdio.h>
#include <inttypes.h>

void foobar(uint64_t x, uint64_t y) {
 printf("The sum of x and y is %lld\n", x + y);
}

gcc -O3 -S t.c
	 .file	 "t.c"
	 .section	 .rodata.str1.1,"aMS",@progbits,1
.LC0:
	 .string	 "The sum of x and y is %lld\n"
	 .text
	 .p2align 4,,15
	 .globl	foobar
	 .type	 foobar, @function
foobar:
.LFB15:
	 .cfi_startproc
	 addq	%rdi, %rsi
	 xorl	 %eax, %eax
	 movl	 $.LC0, %edi
	 jmp	 printf
	 .cfi_endproc
.LFE15:
	 .size	 foobar, .-foobar
	 .ident	"GCC: (GNU) 4.6.1 20110908 (Red Hat 4.6.1-9)"
	 .section	 .note.GNU-stack,"",@progbits

Monday, February 6, 12

A slightly more complex example

#include <stdio.h>
#include <inttypes.h>

void foobar(uint64_t x, uint64_t y) {
 printf("The sum of x and y is %lld\n", x + y);
}

gcc -O3 -S t.c
	 .file	 "t.c"
	 .section	 .rodata.str1.1,"aMS",@progbits,1
.LC0:
	 .string	 "The sum of x and y is %lld\n"
	 .text
	 .p2align 4,,15
	 .globl	foobar
	 .type	 foobar, @function
foobar:
.LFB15:
	 .cfi_startproc
	 addq	%rdi, %rsi
	 xorl	 %eax, %eax
	 movl	 $.LC0, %edi
	 jmp	 printf
	 .cfi_endproc
.LFE15:
	 .size	 foobar, .-foobar
	 .ident	"GCC: (GNU) 4.6.1 20110908 (Red Hat 4.6.1-9)"
	 .section	 .note.GNU-stack,"",@progbits

	 .section	 .rodata
format_string:
	 .string	 "The sum of x and y is %lld\n"

	 .text
	 .globl	foobar

foobar:
	 pushq	 %rbp
	 movq	 %rsp, %rbp
	 addq	 %rdi, %rsi
	 movl $format_string, %edi
	 call	 printf
	 pop %rbp
 ret

Monday, February 6, 12

A slightly more complex example

#include <stdio.h>
#include <inttypes.h>

void foobar(uint64_t x, uint64_t y) {
 printf("The sum of x and y is %lld\n", x + y);
}

	 .section	.rodata
format_string:
	 .string	 "The sum of x and y is %lld\n"

	 .text
	 .globl	 foobar

foobar:
	 pushq	 %rbp
	 movq	 %rsp, %rbp
	 addq	 %rdi, %rsi
	 movl $format_string, %edi
	 call	 printf
	 pop %rbp
 ret

Indicates “read only
data” segment.

Monday, February 6, 12

A slightly more complex example

#include <stdio.h>
#include <inttypes.h>

void foobar(uint64_t x, uint64_t y) {
 printf("The sum of x and y is %lld\n", x + y);
}

Indicates a NULL
terminated ASCII string.
Note that on Mac OS X

this directive is
called .asciz

	 .section	.rodata
format_string:
	 .string	 "The sum of x and y is %lld\n"

	 .text
	 .globl	 foobar

foobar:
	 pushq	 %rbp
	 movq	 %rsp, %rbp
	 addq	 %rdi, %rsi
	 movl $format_string, %edi
	 call	 printf
	 pop %rbp
 ret

Monday, February 6, 12

A slightly more complex example

#include <stdio.h>
#include <inttypes.h>

void foobar(uint64_t x, uint64_t y) {
 printf("The sum of x and y is %lld\n", x + y);
}

Our old friends...
	 .section	.rodata
format_string:
	 .string	 "The sum of x and y is %lld\n"

	 .text
	 .globl	 foobar

foobar:
	 pushq	 %rbp
	 movq	 %rsp, %rbp
	 addq	 %rdi, %rsi
	 movl $format_string, %edi
	 call	 printf
	 pop %rbp
 ret

On Linux x64 systems .rodata
is stored “low” in memory (just
above the code). This means
the address of items in it are <
32 bits. This means you can
specify them directly.

This is not the case on
Mac OS X and other Unixy
systems.

Monday, February 6, 12

Yet another example

#include <stdio.h>
#include <inttypes.h>

int my_array[128];

void initialize_array() {
 int i;
 for(i = 0; i < 128; i++)
	 	 my_array[i] = i;
}

.data
	 .comm	my_array,128,32

.text
	 .globl	 initialize_array

initialize_array:
 push %rbp
 mov %rsp, %rbp
 movl	 $0, %eax
LoopHere:
 movl	 %eax, my_array(%rax)
 addq 	 $4, %rax
 cmpq	 $512, %rax
 jne	 LoopHere
 pop %rbp
 ret

Monday, February 6, 12

Yet another example

#include <stdio.h>
#include <inttypes.h>

int my_array[128];

void initialize_array() {
 int i;
 for(i = 0; i < 128; i++)
	 	 my_array[i] = i;
}

.data
	 .comm	my_array,128,32

.text
	 .globl	 initialize_array

initialize_array:
 push %rbp
 mov %rsp, %rbp
 movl	 $0, %eax
LoopHere:
 movl	 %eax, my_array(%rax)
 addq 	 $4, %rax
 cmpq	 $512, %rax
 jne	 LoopHere
 pop %rbp
 ret

Indicates this stuff belongs in
the “.data” or “.bss” segment.
The .bss or “block started by
symbol” in 1950’s parlance, is
static data that starts out as 0.
The “.data” segment is data
that is initialized in some way.

.comm symbol, size, bits
Make space and put it in .bss

Monday, February 6, 12

Yet another example

#include <stdio.h>
#include <inttypes.h>

int my_array[128];

void initialize_array() {
 int i;
 for(i = 0; i < 128; i++)
	 	 my_array[i] = i;
}

.data
my_array: .zero 512

.text
	 .globl	 initialize_array

initialize_array:
 push %rbp
 mov %rsp, %rbp
 movl	 $0, %eax
LoopHere:
 movl	 %eax, my_array(%rax)
 addq 	 $4, %rax
 cmpq	 $512, %rax
 jne	 LoopHere
 pop %rbp
 ret

Indicates this stuff belongs in
the “.data” or “.bss” segment.
The .bss or “block started by
symbol” in 1950’s parlance, is
static data that starts out as 0.
The “.data” segment is data
that is initialized in some way.

Allocate it but place it in .data

Monday, February 6, 12

Yet another example

#include <stdio.h>
#include <inttypes.h>

int my_array[128] = { 5 };

void initialize_array() {
 int i;
 for(i = 0; i < 128; i++)
	 	 my_array[i] = i;
}

.data
my_array: .long 5
 .zero 508
.text
	 .globl	 initialize_array

initialize_array:
 push %rbp
 mov %rsp, %rbp
 movl	 $0, %eax
LoopHere:
 movl	 %eax, my_array(%rax)
 addq 	 $4, %rax
 cmpq	 $512, %rax
 jne	 LoopHere
 pop %rbp
 ret

Indicates this stuff belongs in
the “.data” or “.bss” segment.
The .bss or “block started by
symbol” in 1950’s parlance, is
static data that starts out as 0.
The “.data” segment is data
that is initialized in some way.

Make my_array[0] = 5 and the
rest 0.

Monday, February 6, 12

Yet another example

#include <stdio.h>
#include <inttypes.h>

int my_array[128];

void initialize_array() {
 int i;
 for(i = 0; i < 128; i++)
	 	 my_array[i] = i;
}

.data
my_array: .zero 512

.text
	 .globl	 initialize_array

initialize_array:
 push %rbp
 mov %rsp, %rbp
 movl	 $0, %eax
LoopHere:
 movl	 %eax, my_array(%rax)
 addq 	 $4, %rax
 cmpq	 $512, %rax
 jne	 LoopHere
 pop %rbp
 ret

Like read-only data, static data
is “low” in memory and so is
addressable directly.

Monday, February 6, 12

Yet another example

#include <stdio.h>
#include <inttypes.h>

int my_array[128];

void initialize_array() {
 int i;
 for(i = 0; i < 128; i++)
	 	 my_array[i] = i;
}

.data
my_array: .zero 512

.text
	 .globl	 initialize_array

initialize_array:
 push %rbp
 mov %rsp, %rbp
 movl	 $0, %eax
LoopHere:
 movl	 %eax, my_array(%rax)
 addq 	 $4, %rax
 cmpq	 $512, %rax
 jne	 LoopHere
 pop %rbp
 ret

Important: movl $0, %eax
sign extends into the full 64 bit
value of 0. This means %rax is
equal to
0x0000000000000000 NOT
0x????????00000000

Monday, February 6, 12

Yet another example

#include <stdio.h>
#include <inttypes.h>

int my_array[128];

void initialize_array() {
 int i;
 for(i = 0; i < 128; i++)
	 	 my_array[i] = i;
}

.data
my_array: .zero 512

.text
	 .globl	 initialize_array

initialize_array:
 push %rbp
 mov %rsp, %rbp
 movl	 $0, %eax
LoopHere:
 movl	 %eax, my_array(%rax)
 addq 	 $4, %rax
 cmpq	 $512, %rax
 jne	 LoopHere
 pop %rbp
 ret

Note the use of a 32 bit value
to be stored, and, a 64 bit
address which is %rax +
constant where the constant is
the starting address of
my_array

Monday, February 6, 12

Yet another example

#include <stdio.h>
#include <inttypes.h>

int my_array[128];

void initialize_array() {
 int i;
 for(i = 0; i < 128; i++)
	 	 my_array[i] = i;
}

.data
my_array: .zero 512

.text
	 .globl	 initialize_array

initialize_array:
 push %rbp
 mov %rsp, %rbp
 movl	 $0, %eax
LoopHere:
 movl	 %eax, my_array(%rax)
 addq 	 $4, %rax
 cmpq	 $512, %rax
 jne	 LoopHere
 pop %rbp
 ret

Observe the 2 step

“if (rax != 512) goto LoopHere”

The cmpq sets bits in the rflags
register. The JNE “jump not
equal” either jumps to
LoopHere if the previous
comparison is “not equal” or
falls through.

Monday, February 6, 12

Yet another example

#include <stdio.h>
#include <inttypes.h>

int my_array[128];

void initialize_array() {
 int i;
 for(i = 0; i < 128; i++)
	 	 my_array[i] = i;
}

.data
my_array: .zero 512

.text
	 .globl	 initialize_array

initialize_array:
 push %rbp
 mov %rsp, %rbp
 movl	 $0, %eax
LoopHere:
 movl	 %eax, my_array(%rax)
 addq 	 $4, %rax
 cmpq	 $512, %rax
 jne	 LoopHere
 pop %rbp
 ret

Note that LoopHere is visible
within the entire scope of the
file, but not declared “.globl” so
it is not visible outside the
object file (the linker cannot
see it). But heed the first part
of that sentence closely.
LoopHere is visible within the
entire scope of the file...

Monday, February 6, 12

Yet another yet another example

#include <stdio.h>
#include <inttypes.h>

void initialize_array(int *my_array) {
 int i;
 for(i = 0; i < 128; i++)
	 	 my_array[i] = i;
}

Monday, February 6, 12

Yet another yet another example

#include <stdio.h>
#include <inttypes.h>

void initialize_array(int *my_array) {
 int i;
 for(i = 0; i < 128; i++)
	 	 my_array[i] = i;
}

	 .text
	 .globl	initialize_array

initialize_array:
	 push %rbp

 mov %rsp, %rbp
	 movl	 $0, %eax
LoopHere:
	 movl	 %eax, (%rdi,%rax,4)
	 addq	 $1, %rax
	 cmpq	 $128, %rax
	 jne		 LoopHere
	 pop	 %rbp
 ret

Wowa! What is this?

(%rdi, %rax, 4) means use the
address %rdi + 4 * %rax

Why is it written in the strange
(%rdi, %rax, 4) notation? I
have no idea. MASM is much
saner here, with [%rdi + 4*
%rax].

NOTE: Arbitrary multiplies are
NOT ALLOWED. Only 2, 4, 8.

Monday, February 6, 12

Yet another yet another example

#include <stdio.h>
#include <inttypes.h>

void initialize_array(int *my_array) {
 int i;
 for(i = 0; i < 128; i++)
	 	 my_array[i] = i;
}

	 .text
	 .globl	initialize_array

initialize_array:
	 push %rbp

 mov %rsp, %rbp
	 movl	 $0, %eax
LoopHere:
	 movl	 %eax, (%rdi,%rax,4)
	 addq	 $1, %rax
	 cmpq	 $128, %rax
	 jne		 LoopHere
	 pop	 %rbp
 ret

Since we are multiplying %rax
by 4 on the address
calculation, we count up to
128 here, not 512.

Monday, February 6, 12

Checkpoint!

• By now you should be able to write simple functions in x64 assembly that are
callable by C code. In increasing order of complexity, try and write the
following functions on your own time. I highly recommend you do this:
• int strlen(char *s)
• void memcpy(void *dest, void *src, int length)
• int strcpy(char *dest, char *src)
• int atoi(char *s)

• Up next: broad overview of instructions
• After that: what would Brian Boitano do? i.e., understanding how gcc does it.

Monday, February 6, 12

A few arithmetic instructions

Format Computation
add Src,Dest Dest = Dest + Src
sub Src,Dest Dest = Dest - Src
imul Src,Dest Dest = Dest * Src
sal Src,Dest Dest = Dest << Src
sar Src,Dest Dest = Dest >> Src
shr Src,Dest Dest = Dest >> Src
xor Src,Dest Dest = Dest ^ Src
and Src,Dest Dest = Dest & Src
or Src,Dest Dest = Dest | Src
inc Dest Dest = Dest + 1
dec Dest Dest = Dest - 1
neg Dest Dest = -Dest
not Dest Dest = ~Dest

Remember: the type
has to be inferable or

explicit (recommended).
e.g. “addl” or “addq”,

etc

Monday, February 6, 12

Branch instructions

jX Condition Description
jmp 1 Unconditional
je ZF Equal / Zero
jne ~ZF Not Equal / Not Zero
js SF Negative
jns ~SF Nonnegative
jg ~(SF^OF)&~ZF Greater (Signed)
jge ~(SF^OF) Greater or Equal (Signed)
jl (SF^OF) Less (Signed)
jle (SF^OF)|ZF Less or Equal (Signed)
ja ~CF&~ZF Above (unsigned)
jb CF Below (unsigned)

CF: Carry Flag
ZF: Zero Flag
SF: Sign Flag
OF: Overflow Flag

cmp - subtract
test - and

Monday, February 6, 12

Jump targets

• here:
jmp here # ordinary jumps to labels
• Note that in x86 (32 bit) this is encoded to the hardware as jmp #constant.

For x64 (64 bit) if the #constant is small, such as on Linux, then it can be
encoded directly like that. But if the constant is large, as it would be on
Mac OS X, then it is encoded as “rip relative”. For the most part, you do
not have to think about this as a software developer unless you end up
writing a hypervisor, assembler, JIT, etc, etc.

• jmp %rax # jump to the address specified in the register
• jmp *%rax # jump to the address stored at the memory

 location pointed to by %rax

• Similar target labels work for CALL/RET

Monday, February 6, 12

Memory addressing

 Most General Form
 D(Rb,Ri,S) Mem[Rb+S*Ri+ D]

 D: Constant “displacement” 1, 2, or 4 bytes
 Rb: Base register: Any of 16 integer registers
 Ri: Index register: Any, except for %rsp

 Unlikely you’d use %rbp, either
 S: Scale: 1, 2, 4, or 8

 Special Cases
 (Rb,Ri) Mem[Rb+Ri]
 D(Rb,Ri) Mem[Rb+Ri+D]
 (Rb,Ri,S) Mem[Rb+S*Ri]

Syntax:
in gcc *%rax is the same as (%rax)
in MASM must do [rax]

There is an instruction,
“lea” that does

everything but the load.
It stands for “load
effective address”.

Why do you think such
an instruction exists?

Monday, February 6, 12

Today

• “finish” off assembly 101 (but don’t worry, it will return, oh yes it will..)
• first we’ll detour through sections some more...

• move on to C
• The wonderful world of the preprocessor
• Hello world!

Monday, February 6, 12

How does gcc “write” assembly?
Don’t be ashamed to write things in C and
do “gcc -S file.c” to generate a file.s output!
Note that “gcc -S file.c” is very “chatty”
assembly because it is not optimized. I
recommend “gcc -O -S file.c”. And for a
good time, try “gcc -O3 -S file.c”

Don’t do this for the homework and just
turn in the output. But if you are stuck or
just need to learn something about the
runtime environment, by all means, go for it!

Monday, February 6, 12

How does gcc “write” assembly?

• Before delving into this, lets first digress a little and discuss what the runtime
environment is like in a C program.

• On Unix systems binary images are stored in ELF (newer) or COFF (older) format. A
binary is just a file, like any other file (image, text document, etc). Except that it is
formatted in such a way that the operating system knows how to load it into a process
space and get it started. Binary files are made up of a header, and several “sections”

• .text - code
• .bss - block started by symbol (data that is initialized to 0)
• .data - data
• .rodata - read only data
• And many many more. In fact, you can even stick your own in there if you like (and

this is a very very useful programming trick. Search for “linker sets”
• Typically there are also sections to store debug information.

• Similar (but of course, different) things occur on Windows platforms.

Monday, February 6, 12

Loading a binary into memory

header

text/code

binary process memory

data

ssdata
rodata

text/code

data

ssdata
rodata

stack

heap

Note: there is no relationship
between the order of the sections

in the binary image and where they
are located in process memory.

Two new memory locations have
been added, a heap (typically just

above the data) and the stack
(typically at the “top” of user

space). The heap grows up, the
stack grows down, until they

collide!

Monday, February 6, 12

Loading a binary into memory

header

text/code

binary process memory

data

ssdata
rodata

text/code

data

ssdata
rodata

stack

heap

The binary also contains a “start
address”, which is the location the

operating system jumps to after
loading the image. On Unix system
the default start symbol is “_start”
typically located in crt0.o or libc

which are linked into your program.

Arguments passed to execv are
copied into the top of the stack.
When the OS jumps to the start

location it also has set rsp to point
here.

Monday, February 6, 12

The libc ecosystem

• C programs typically execute with a library “libc” that provides some useful
functionality, including file and console I/O (e.g. printf), and memory
management (malloc/free).

• This functionality is initialized before your main(...) function is invoked. This is
why C programs typically start at _start and not main.

• For 99.9% of C programing you do not have to think about this.
• But it is very helpful to know that the world works this way.
• The Linux kernel is just an ELF binary like any other.

• But it doesn’t have a _start like any other!
• The hypervisor my old company wrote also was an ELF binary.

• Even on Windows! We ported the BSD ELF loading code to load our HV
• Again, just as with Linux, we have to use a custom startup. No libc.

• Eventually _start invokes main(...), and from then on your code executes.

Monday, February 6, 12

gcc -O4 -S

#define ARRAY_LENGTH (128)

static void foo(int *array, int length) {
	 int i;
	 for(i = 0; i < length; i++) {
	 	 array[i] = i;
	 }
}

int main(int argc, char *argv[]) {
	 int array[ARRAY_LENGTH];

	 foo(array, ARRAY_LENGTH);
	 return 0;
}

	 .file	 "test.c"
	 .section	 .text.startup,"ax",@progbits
	 .p2align 4,,15
	 .globl	 main
	 .type	main, @function
main:
.LFB1:
	 .cfi_startproc
	 xorl	 %eax, %eax
	 ret
	 .cfi_endproc
.LFE1:
	 .size	main, .-main
	 .ident	 "GCC: (GNU) 4.6.1 20110908 (Red Hat 4.6.1-9)"
	 .section	 .note.GNU-stack,"",@progbits

dude, where’s my function?

Monday, February 6, 12

gcc -O4 -S
 .file "test.c"
 .text
 .p2align 4,,15
 .globl foo
 .type foo, @function
foo:
.LFB0:
 .cfi_startproc
 testl %esi, %esi
 jle .L1
 movq %rdi, %rcx
 movq %rdi, %rdx
 andl $15, %ecx
 shrq $2, %rcx
 negq %rcx
 andl $3, %ecx
 cmpl %esi, %ecx
 cmova %esi, %ecx
 xorl %eax, %eax
 testl %ecx, %ecx
 mov %ecx, %r11d
 je .L3
 .p2align 4,,10
 .p2align 3
.L4:
 movl %eax, (%rdx)
 addl $1, %eax
 addq $4, %rdx
 cmpl %ecx, %eax
 jb .L4
 cmpl %ecx, %esi
 je .L13
.L3:
 movl %esi, %r10d
 subl %ecx, %r10d
 movl %r10d, %r8d
 shrl $2, %r8d
 leal 0(,%r8,4), %r9d
 testl %r9d, %r9d
 je .L5
 leal 1(%rax), %edx
 movl %eax, -24(%rsp)
 leaq (%rdi,%r11,4), %rcx
 movl %edx, -20(%rsp)
 leal 2(%rax), %edx
 movd -20(%rsp), %xmm2
 movl %edx, -16(%rsp)
 leal 3(%rax), %edx
 movd -16(%rsp), %xmm1
 movl %edx, -12(%rsp)
 xorl %edx, %edx
 movd -12(%rsp), %xmm0

51,2-5 Top

.L4:
 movl %eax, (%rdx)
 addl $1, %eax
 addq $4, %rdx
 cmpl %ecx, %eax
 jb .L4
 cmpl %ecx, %esi
 je .L13
.L3:
 movl %esi, %r10d
 subl %ecx, %r10d
 movl %r10d, %r8d
 shrl $2, %r8d
 leal 0(,%r8,4), %r9d
 testl %r9d, %r9d
 je .L5
 leal 1(%rax), %edx
 movl %eax, -24(%rsp)
 leaq (%rdi,%r11,4), %rcx
 movl %edx, -20(%rsp)
 leal 2(%rax), %edx
 movd -20(%rsp), %xmm2
 movl %edx, -16(%rsp)
 leal 3(%rax), %edx
 movd -16(%rsp), %xmm1
 movl %edx, -12(%rsp)
 xorl %edx, %edx
 movd -12(%rsp), %xmm0

51,2-5 Top

 movd -16(%rsp), %xmm1
 movl %edx, -12(%rsp)
 xorl %edx, %edx
 movd -12(%rsp), %xmm0
 punpckldq %xmm0, %xmm1
 movd -24(%rsp), %xmm0
 punpckldq %xmm2, %xmm0
 movdqa .LC0(%rip), %xmm2
 punpcklqdq %xmm1, %xmm0
 jmp .L6
 .p2align 4,,10
 .p2align 3
.L9:
 movdqa %xmm1, %xmm0
.L6:
 movdqa %xmm0, %xmm1
 addl $1, %edx
 movdqa %xmm0, (%rcx)
 addq $16, %rcx
 cmpl %r8d, %edx
 paddd %xmm2, %xmm1
 jb .L9
 addl %r9d, %eax
 cmpl %r9d, %r10d
 je .L1
.L5:
 movslq %eax, %rdx
 leaq (%rdi,%rdx,4), %rdx
 .p2align 4,,10
 .p2align 3
.L7:
 movl %eax, (%rdx)
 addl $1, %eax
 addq $4, %rdx
 cmpl %eax, %esi
 jg .L7
.L1:
 rep
 ret
.L13:
 ret
 .cfi_endproc
.LFE0:
 .size foo, .-foo
 .section .text.startup,"ax",@progbits
 .p2align 4,,15
 .globl main
 .type main, @function
main:
.LFB1:
 .cfi_startproc
 xorl %eax, %eax
 ret
 .cfi_endproc

 .L5:
 movslq %eax, %rdx
 leaq (%rdi,%rdx,4), %rdx
 .p2align 4,,10
 .p2align 3
.L7:
 movl %eax, (%rdx)
 addl $1, %eax
 addq $4, %rdx
 cmpl %eax, %esi
 jg .L7
.L1:
 rep
 ret
.L13:
 ret
 .cfi_endproc
.LFE0:
 .size foo, .-foo
 .section .text.startup,"ax",@progbits
 .p2align 4,,15
 .globl main
 .type main, @function
main:
.LFB1:
 .cfi_startproc
 xorl %eax, %eax
 ret
 .cfi_endproc

Looks like a perfect exam question!

Monday, February 6, 12

gcc -O4 -S

 .section .text.startup,"ax",@progbits
 .p2align 4,,15
 .globl main
 .type main, @function
main:
.LFB1:
 .cfi_startproc
 xorl %eax, %eax
 ret
 .cfi_endproc

Monday, February 6, 12

Lessons

• Writing highly optimized assembly is hard work.
• Modern compilers are very good at it, often times better than humans
• Modern compilers also do many things that in 99.9% of the time are good for

you, but in 0.1% of the time are not. Among the ones that will be the least
helpful for your -S usage:
• Dead code elimination
• Loop unrolling
• Loop invariant code motion
• Code motion in general (instruction scheduling)
• Function inlining

Monday, February 6, 12

gcc -S
 .file "test.c"
 .text
 .globl foo
 .type foo, @function
foo:
.LFB0:
 .cfi_startproc
 pushq %rbp
 .cfi_def_cfa_offset 16
 .cfi_offset 6, -16
 movq %rsp, %rbp
 .cfi_def_cfa_register 6
 movq %rdi, -24(%rbp)
 movl %esi, -28(%rbp)
 movl $0, -4(%rbp)
 jmp .L2
.L3:
 movl -4(%rbp), %eax
 cltq
 salq $2, %rax
 addq -24(%rbp), %rax
 movl -4(%rbp), %edx
 movl %edx, (%rax)
 addl $1, -4(%rbp)
.L2:
 movl -4(%rbp), %eax
 cmpl -28(%rbp), %eax
 jl .L3
 popq %rbp
 .cfi_def_cfa 7, 8
 ret
 .cfi_endproc
.LFE0:
 .size foo, .-foo
 .globl main
 .type main, @function

main:
.LFB1:
 .cfi_startproc
 pushq %rbp
 .cfi_def_cfa_offset 16
 .cfi_offset 6, -16
 movq %rsp, %rbp
 .cfi_def_cfa_register 6
 subq $528, %rsp
 movl %edi, -516(%rbp)
 movq %rsi, -528(%rbp)
 leaq -512(%rbp), %rax
 movl $128, %esi
 movq %rax, %rdi
 call foo
 movl $0, %eax
 leave
 .cfi_def_cfa 7, 8
 ret
 .cfi_endproc
.LFE1:
 .size main, .-main
 .ident "GCC: (GNU) 4.6.1 20110908 (Red Hat 4.6.1-9)"
 .section .note.GNU-stack,"",@progbits

Monday, February 6, 12

gcc -S
 .file "test.c"
 .text
 .globl foo
 .type foo, @function
foo:
.LFB0:
 .cfi_startproc
 pushq %rbp
 .cfi_def_cfa_offset 16
 .cfi_offset 6, -16
 movq %rsp, %rbp
 .cfi_def_cfa_register 6
 movq %rdi, -24(%rbp)
 movl %esi, -28(%rbp)
 movl $0, -4(%rbp)
 jmp .L2
.L3:
 movl -4(%rbp), %eax
 cltq
 salq $2, %rax
 addq -24(%rbp), %rax
 movl -4(%rbp), %edx
 movl %edx, (%rax)
 addl $1, -4(%rbp)
.L2:
 movl -4(%rbp), %eax
 cmpl -28(%rbp), %eax
 jl .L3
 popq %rbp
 .cfi_def_cfa 7, 8
 ret
 .cfi_endproc
.LFE0:
 .size foo, .-foo
 .globl main
 .type main, @function

main:
.LFB1:
 .cfi_startproc
 pushq %rbp
 .cfi_def_cfa_offset 16
 .cfi_offset 6, -16
 movq %rsp, %rbp
 .cfi_def_cfa_register 6
 subq $528, %rsp
 movl %edi, -516(%rbp)
 movq %rsi, -528(%rbp)
 leaq -512(%rbp), %rax
 movl $128, %esi
 movq %rax, %rdi
 call foo
 movl $0, %eax
 leave
 .cfi_def_cfa 7, 8
 ret
 .cfi_endproc
.LFE1:
 .size main, .-main
 .ident "GCC: (GNU) 4.6.1 20110908 (Red Hat 4.6.1-9)"
 .section .note.GNU-stack,"",@progbits

Monday, February 6, 12

gcc -O1 -S
 .file "test.c"
 .text
 .globl foo
 .type foo, @function
foo:
.LFB0:
 .cfi_startproc
 testl %esi, %esi
 jle .L1
 movl $0, %eax
.L3:
 movl %eax, (%rdi,%rax,4)
 addq $1, %rax
 cmpl %eax, %esi
 jg .L3
.L1:
 rep
 ret
 .cfi_endproc
.LFE0:
 .size foo, .-foo
 .globl main
 .type main, @function
main:
.LFB1:
 .cfi_startproc
 subq $512, %rsp
 .cfi_def_cfa_offset 520
 movl $128, %esi
 movq %rsp, %rdi
 call foo
 movl $0, %eax
 addq $512, %rsp
 .cfi_def_cfa_offset 8
 ret
 .cfi_endproc
.LFE1:
 .size main, .-main
 .ident "GCC: (GNU) 4.6.1 20110908 (Red Hat 4.6.1-9)"
 .section .note.GNU-stack,"",@progbits

 .text
 .globl foo
foo:
 testl %esi, %esi
 jle .L1
 movl $0, %eax
.L3:
 movl %eax, (%rdi,%rax,4)
 addq $1, %rax
 cmpl %eax, %esi
 jg .L3
.L1:
 rep
 ret
 .globl main
main:
 subq $512, %rsp
 movl $128, %esi
 movq %rsp, %rdi
 call foo
 movl $0, %eax
 addq $512, %rsp
 ret

just about right for human
understanding

Monday, February 6, 12

gcc -O1 -S
 .text
 .globl foo
foo:
 testl %esi, %esi
 jle .L1
 movl $0, %eax
.L3:
 movl %eax, (%rdi,%rax,4)
 addq $1, %rax
 cmpl %eax, %esi
 jg .L3
.L1:
 rep
 ret
 .globl main
main:
 subq $512, %rsp
 movl $128, %esi
 movq %rsp, %rdi
 call foo
 movl $0, %eax
 addq $512, %rsp
 ret

huh? rep ret?

Monday, February 6, 12

