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Fractional binary numbers
 What is 1011.101?
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• • •
b–1.

Fractional Binary Numbers

 Representation
 Bits to right of “binary point” represent fractional 

powers of 2
 Represents rational number:

bi bi–1 b2 b1 b0 b–2 b–3 b–j• • •• • •
1
2
4

2i–1
2i

• • •

1/2
1/4
1/8

2–j
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Fractional Binary Numbers: 
Examples
Value Representation

5 and 3/4
2 and 7/8
63/64

Observations
 Divide by 2 by shifting right
 Multiply by 2 by shifting left
 Numbers of form 0.111111…2 are just below 1.0

 1/2 + 1/4 + 1/8 + … + 1/2i + … → 1.0
 Use notation 1.0 – ε

101.112
10.1112

0.1111112
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Representable Numbers
 Limitation

 Can only exactly represent numbers of the form x/2k

 Other rational numbers have repeating bit 
representations

 Value Representation
1/3 0.0101010101[01]…2
1/5 0.001100110011[0011]…2
1/10 0.0001100110011[0011]…2
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Fixed Point Representation
 float → 32 bits;  double → 64 bits
 We might try representing fractional binary 

numbers by picking a fixed place for an implied 
binary point
 “fixed point binary numbers”

 Let's do that, using 8 bit floating point numbers as an 
example
 #1: the binary point is between bits 2 and 3

    b7 b6 b5b4 b3  [.] b2 b1 b0

 #2: the binary point is between bits 4 and 5
    b7 b6 b5 [.] b4 b3 b2 b1 b0

 The position of the binary point affects the range and 
precision

� range: difference between the largest and smallest 
representable numbers

� precision: smallest possible difference between any 
two numbers
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Fixed Point Pros and Cons

 Pros
 It's simple.  The same hardware that does integer 

arithmetic can do fixed point arithmetic
� In fact, the programmer can use ints with an implicit 

fixed point
 E.g., int balance;  // number of pennies in the 

account
� ints are just fixed point numbers with the binary point 

to the right of b0

 Cons
 There is no good way to pick where the fixed point should 

be
� Sometimes you need range, sometimes you need 

precision.  The more you have of one, the less of the 
other
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IEEE Floating Point

 Fixing fixed point: analogous to scientific 
notation
 Not 12000000 but 1.2 x 10^7; not 0.0000012 but 1.2 x 

10^-6
 IEEE Standard 754

 Established in 1985 as uniform standard for floating 
point arithmetic
 Before that, many idiosyncratic formats

 Supported by all major CPUs
 Driven by numerical concerns

 Nice standards for rounding, overflow, underflow
 Hard to make fast in hardware

 Numerical analysts predominated over hardware 
designers in defining standard
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 Numerical Form: 
(–1)s M  2E

 Sign bit s determines whether number is negative or 
positive

 Significand (mantissa) M  normally a fractional value in 
range [1.0,2.0).

 Exponent E weights value by power of two

 Encoding
 MSB s is sign bit s
 frac field encodes M (but is not equal to M)
 exp field encodes E (but is not equal to E)

Floating Point Representation

s exp frac
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Precisions
 Single precision: 32 bits

 Double precision: 64 bits

 Extended precision: 80 bits (Intel only)

s exp frac

s exp frac

s exp frac

1 8 23

1 11 52

1 15 63 or 64



10

University of Washington

Normalization and Special 
Values

 “Normalized” means mantissa has form 1.xxxxx
0.011 x 25 and 1.1 x 23 represent the same number, but the latter makes 
better use of the available bits
Since we know the mantissa starts with a 1, don't bother to store it

 How do we do 0? How about 1.0/0.0?
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Normalization and Special 
Values

 “Normalized” means mantissa has form 1.xxxxx
0.011 x 25 and 1.1 x 23 represent the same number, but the latter makes 
better use of the available bits
Since we know the mantissa starts with a 1, don't bother to store it

 Special values:
The float value 00...0 represents zero
If the exp == 11...1 and the mantissa == 00...0, it represents ∞
E.g., 10.0 / 0.0 → ∞
If the exp == 11...1 and the mantissa != 00...0, it 
represents NaN
“Not a Number”
Results from operations with undefined result

� E.g., 0 * ∞
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How do we do operations?
 Is representation exact?
 How are the operations carried out?
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Floating Point Operations: Basic 
Idea
 x +f y = Round(x + y)

 x *f y = Round(x * y)

 Basic idea
 First compute exact result
 Make it fit into desired precision

 Possibly overflow if exponent too large
 Possibly round to fit into frac
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Floating Point Multiplication
(–1)s1 M1  2E1

   *   (–1)s2 M2  2E2

 Exact Result: (–1)s M  2E

 Sign s: s1 ^ s2
 Significand M: M1 * M2
 Exponent E: E1 + E2

 Fixing
 If M ≥ 2, shift M right, increment E 
 If E out of range, overflow 
 Round M to fit frac precision

 Implementation
 What is hardest?



15

University of Washington

Floating Point 
Addition

(–1)s1 M1  2E1   +   (-1)s2 M2  2E2

Assume E1 > E2

 Exact Result: (–1)s M  2E

 Sign s, significand M: 
 Result of signed align & add

 Exponent E: E1

 Fixing
 If M ≥ 2, shift M right, increment E 
 if M < 1, shift M left k positions, decrement E by k
 Overflow if E out of range
 Round M to fit frac precision

(–1)s1 M1 

(–1)s2 M2 

E1–E2

+

(–1)s M
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Hmm… if we round at every 
operation…



17

University of Washington

Mathematical Properties of FP 
Operations
 Not really associative or distributive due to rounding
 Infinities and NaNs cause issues
 Overflow and infinity
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Floating Point in C
 C Guarantees Two Levels

float single precision
double double precision

 Conversions/Casting
 Casting between int, float, and double changes bit 

representation
  Double/float → int

 Truncates fractional part
 Like rounding toward zero
 Not defined when out of range or NaN: Generally 

sets to TMin
  int → double

 Exact conversion, why?
  int → float

 Will round according to rounding mode
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Memory Referencing Bug
double fun(int i)
{
  volatile double d[1] = {3.14};
  volatile long int a[2];
  a[i] = 1073741824; /* Possibly out of bounds */
  return d[0];
}

fun(0)  –> 3.14
fun(1)  –> 3.14
fun(2)  –> 3.1399998664856
fun(3)  –> 2.00000061035156
fun(4)  –> 3.14, then segmentation fault

Saved State
d7 … d4
d3 … d0
a[1]
a[0] 0

1
2
3
4

Location accessed 
by fun(i)
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Floating Point and the 
Programmer#include <stdio.h>

int main(int argc, char* argv[]) {

  float f1 = 1.0;
  float f2 = 0.0;
  int i;
  for ( i=0; i<10; i++ ) {
    f2 += 1.0/10.0;
  }

  printf("0x%08x  0x%08x\n", *(int*)&f1, *(int*)&f2);
  printf("f1 = %10.8f\n", f1);
  printf("f2 = %10.8f\n\n", f2);

  f1 = 1E30;
  f2 = 1E-30;
  float f3 = f1 + f2;
  printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );

  return 0;
}
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Floating Point and the 
Programmer#include <stdio.h>

int main(int argc, char* argv[]) {

  float f1 = 1.0;
  float f2 = 0.0;
  int i;
  for ( i=0; i<10; i++ ) {
    f2 += 1.0/10.0;
  }

  printf("0x%08x  0x%08x\n", *(int*)&f1, *(int*)&f2);
  printf("f1 = %10.8f\n", f1);
  printf("f2 = %10.8f\n\n", f2);

  f1 = 1E30;
  f2 = 1E-30;
  float f3 = f1 + f2;
  printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );

  return 0;
}

$ ./a.out 
0x3f800000  0x3f800001
f1 = 1.000000000
f2 = 1.000000119

f1 == f3? yes
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Summary
 As with integers, floats suffer from the fixed 
number of bits 
   available to represent them 
Can get overflow/underflow, just like ints
Some “simple fractions” have no exact representation

 E.g., 0.1
Can also lose precision, unlike ints

  “Every operation gets a slightly wrong 
result”

 Mathematically equivalent ways of writing an 
expression may 
   compute differing results

 NEVER test floating point values for equality!
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