University of Washington

Fractional binary numbers

" What is 1011.101?

University of Washington

Fractional Binary Numbers

2i
2i -1

2
‘ |—1
bibi—l... b2 bl 0m) b b3 oo o b_J
1/2

1/ 8
>

" Representation

= Bits to right of “binary point” represent fractional
powers of 2

" Represents rational numqu e

Fractional Binary Numbers:

Examples
"Value Representation
5 and 3/4 101.11,
2 and 7/8 10.111,
63/64 0.111111,
"Observations

= Divide by 2 by shifting right

" Multiply by 2 by shifting left

= Numbers of form 0.111111.., are just below 1.0
"1/2+1/4+1/8 + ... +1/2' + ... - 1.0
" Use notation 1.0 - ¢

University of Washington

Representable Numbers

= Limitation
= Can only exactly represent numbers of the form x/2k
= Other rational numbers have repeating bit

representations
" Value Representation
1/3 0.01010101011[01]..,
1/5 0.001100110011[0011]..,

110 0.0001100110011[0011]..,

University of Washington

Fixed Point Representation

* float — 32 bits; double — 64 bits

* We might try representing fractional binary
numbers by picking a fixed place for an implied
binary point
* “fixed point binary numbers”

* Let's do that, using 8 bit floating point numbers as an
example

* #1: the binary point is between bits 2 and 3
b.b . bb,b, [.]b,b b,
* #2: the binary point is between bits 4 and 5
b.b b _[.]b,b,b,b b,
* The position of the binary point affects the range and
precision

range: difference between the largest and smallest
representable numbers

University of Washington

Fixed Point Pros and Cons

° Pros

 It's simple. The same hardware that does integer
arithmetic can do fixed point arithmetic

In fact, the programmer can use ints with an implicit
fixed point
* E.g., int balance; // number of pennies in the
account

ints are just fixed point numbers with the binary point
to the right of b

* Cons
* There is no good way to pick where the fixed point should
be

Sometimes you need range, sometimes you need
precision. The more you have of one, the less of the
other

University of Washington

IEEE Floating Point

® Fixing fixed point: analogous to scientific
notation
" Not 12000000 but 1.2 x 1077; not 0.0000012 but 1.2 x
107-6
" |[EEE Standard 754

= Established in 1985 as uniform standard for floating
point arithmetic

* Before that, many idiosyncratic formats
= Supported by all major CPUs

" Driven by numerical concerns
= Nice standards for rounding, overflow, underflow
= Hard to make fast in hardware

" Numerical analysts predominated over hardware
designers in defining standard

Floating Point Representation

°* Numerical Form:
(1) M 2F
* Sign bit s determines whether number is negative or
positive

* Significand (mantissa) M normally a fractional value in
range [1.0,2.0).
* Exponent E weights value by power of two

* Encoding

* MSB s is sign bit s

* frac field encodes M (but is not equal to M)
* exp field encodes E (but is not equal to E)

s“exp frac

University of Washington

Precisions

® Single precision: 32 bits

s [lexp frac

1 8 23

" Double precision: 64 bits

s [lexp frac

1 11 52

" Extended precision: 80 bits (Intel only)

s [lexp frac

1 15 63 or 64

Normalization and Special

Values

* £ Normalized” means mantissa has form 1.200(x

*0.011 x 2° and 1.1 x 23 represent the same number, but the latter makes
better use of the available bits

*Since we know the mantissa starts with a 1, don't bother to store it

* How do we do 0? How about 1.0/0.0?

10

Normalization and Special

Values

* £ Normalized” means mantissa has form 1.200(x

*0.011 x 2° and 1.1 x 23 represent the same number, but the latter makes
better use of the available bits

*Since we know the mantissa starts with a 1, don't bother to store it

* Special values:
*The float value 00...0 represents zero
*If the exp == 11...1 and the mantissa == 00...0, it represents «

*E.g.,10.0/0.0 » =

‘If the exp == 11...1 and the mantissa != 00...0, it
represents NaN

*“Not a Number”

*Results from operations with undefined result
E.g.,0 "

11

University of Washington

How do we do operations?

® |s representation exact?
® How are the operations carried out?

19

L University of Washington
Floating Point Operations: Basic

ldea

Hx +

Y Round (x + v)

Bx * y = Round(x * Vy)

= Basic idea
= First compute exact result
= Make it fit into desired precision
" Possibly overflow if exponent too large
" Possibly round to fit into frac

42

Floating Point Multiplication

(-1)s' M1 281 * (-1)s2 M2 2E2
" Exact Result: (-1)sM 2F

= Sign s: s1 ”* s2
= Significand M: M1 * M2
= Exponent E: E1 + E2

" Fixing
= If M 2 2, shift M right, increment E
= If E out of range, overflow
= Round M to fit £frac precision

" Implementation
= What is hardest?

1A

University of Washington

Floating Point
Addition

(_1)s1 M1 281 + (_1)sz M2 2E2
Assume E1 > E2

[—E1-E2—]

= Exact Result: (-1)s M 2F (=1)* M1

= Sign s, significand M:
" Result of signed align & add

(-1)s2 M2

= Exponent E: E1

(1) M

" Fixing
= If M 2 2, shift M right, increment E

= if M < 1, shift M left k positions, decrement E by k

= Overflow if E out of range
= Round M to fit frac precision

1B

Hmm... if we round at every

operation...

1A

Mathematical Properties of FP
Operations
® Not really associative or distributive due to rounding

B Infinities and NaNs cause issues
® Overflow and infinity

47

University of Washington

Floating Point in C

® C Guarantees Two Levels
float single precision
double double precision

® Conversions/Casting

= Casting between int, float, and double changes bit
representation

" Double/float — int
" Truncates fractional part
" Like rounding toward zero

" Not defined when out of range or NaN: Generally
sets to TMin

" int — double
= Exact conversion, why?
" int — float

141 Q

University of Washington

Memory Referencing Bug

double fun(int 1i)
{

volatile double d[1l] = {3.14};

volatile long int af[2];

al[i] = 1073741824; /* Possibly out of bounds */
return d[0];

fun(0) -—> 3.14

fun(l) —> 3.14

fun(2) —> 3.1399998664856

fun(3) —> 2.00000061035156

fun(4) —> 3.14, then segmentation fault

Saved State 4
d7 .. d4 3
Location accessed
d3 .. do 2 .
by fun (i)
alll] 1
al0] 0 J

19

University of Washington

Floating Point and the
Programmer

#include tdio.

int main(int argc, char* argv([]) {
float £f1 = 1.0;
float £2 = 0.0;

int 1i;

for (i=0; 1<10; i++) {
f2 4= 1.0/10.0;

}

printf ("0x%08x 0x%08x\n", *(int*)&fl, *(int*)&f2);
printf ("f1l = %10.8f\n", f1);
printf ("f2 = %10.8f\n\n", £2);

f1 = 1E30;

f2 = 1E-30;

float £3 = f1 + £2;

printf ("fl == £3? %$s\n", fl == £3 ? "yes" : "no");

return 0;

Floating Point and the

Programmer

#include tdio.

int main(int argc, char* argv([]) {
float £f1 = 1.0;
float £2 = 0.0;

int 1i;

for (i=0; 1<10; i++) {
f2 4= 1.0/10.0;

}

printf ("0x%08x 0x%08x\n", *(int*)&fl, *(int*)&f2); S ./a.out

printf ("fl = %10.8f\n", f1); 0x3£800000 0x3£800001
printf ("f2 = %10.8f\n\n", £2); f1 = 1.000000000
f2 = 1.000000119
f1 = 1E30;
f2 = 1E-30; f1 == £3? yes
float £3 = f1 + £2;
printf ("fl == £3? %$s\n", fl == £3 ? "yes" : "no");

return 0;

University of Washington

Summary

* As with integers, floats suffer from the fixed
number of bits

available to represent them
Can get overflow/underflow, just like ints
‘Some “simple fractions” have no exact representation

¢ Elgl, 0-1
*Can also lose precision, unlike ints

* “Every operation gets a slightly wrong
result”

* Mathematically equivalent ways of writing an
expression may
compute differing resulits

* NEVER test floating point values for equality!

Lo Lo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

