
1

University of Washington

Fractional binary numbers
 What is 1011.101?

2

University of Washington

• • •
b–1.

Fractional Binary Numbers

 Representation
 Bits to right of “binary point” represent fractional

powers of 2
 Represents rational number:

bi bi–1 b2 b1 b0 b–2 b–3 b–j• • •• • •
1
2
4

2i–1
2i

• • •

1/2
1/4
1/8

2–j

3

University of Washington

Fractional Binary Numbers:
Examples
Value Representation

5 and 3/4
2 and 7/8
63/64

Observations
 Divide by 2 by shifting right
 Multiply by 2 by shifting left
 Numbers of form 0.111111…2 are just below 1.0

 1/2 + 1/4 + 1/8 + … + 1/2i + … → 1.0
 Use notation 1.0 – ε

101.112
10.1112

0.1111112

4

University of Washington

Representable Numbers
 Limitation

 Can only exactly represent numbers of the form x/2k

 Other rational numbers have repeating bit
representations

 Value Representation
1/3 0.0101010101[01]…2
1/5 0.001100110011[0011]…2
1/10 0.0001100110011[0011]…2

University of Washington

Fixed Point Representation
 float → 32 bits; double → 64 bits
 We might try representing fractional binary

numbers by picking a fixed place for an implied
binary point
 “fixed point binary numbers”

 Let's do that, using 8 bit floating point numbers as an
example
 #1: the binary point is between bits 2 and 3

 b7 b6 b5b4 b3 [.] b2 b1 b0

 #2: the binary point is between bits 4 and 5
 b7 b6 b5 [.] b4 b3 b2 b1 b0

 The position of the binary point affects the range and
precision

� range: difference between the largest and smallest
representable numbers

� precision: smallest possible difference between any
two numbers

University of Washington

Fixed Point Pros and Cons

 Pros
 It's simple. The same hardware that does integer

arithmetic can do fixed point arithmetic
� In fact, the programmer can use ints with an implicit

fixed point
 E.g., int balance; // number of pennies in the

account
� ints are just fixed point numbers with the binary point

to the right of b0

 Cons
 There is no good way to pick where the fixed point should

be
� Sometimes you need range, sometimes you need

precision. The more you have of one, the less of the
other

7

University of Washington

IEEE Floating Point

 Fixing fixed point: analogous to scientific
notation
 Not 12000000 but 1.2 x 10^7; not 0.0000012 but 1.2 x

10^-6
 IEEE Standard 754

 Established in 1985 as uniform standard for floating
point arithmetic
 Before that, many idiosyncratic formats

 Supported by all major CPUs
 Driven by numerical concerns

 Nice standards for rounding, overflow, underflow
 Hard to make fast in hardware

 Numerical analysts predominated over hardware
designers in defining standard

8

University of Washington

 Numerical Form:
(–1)s M 2E

 Sign bit s determines whether number is negative or
positive

 Significand (mantissa) M normally a fractional value in
range [1.0,2.0).

 Exponent E weights value by power of two

 Encoding
 MSB s is sign bit s
 frac field encodes M (but is not equal to M)
 exp field encodes E (but is not equal to E)

Floating Point Representation

s exp frac

9

University of Washington

Precisions
 Single precision: 32 bits

 Double precision: 64 bits

 Extended precision: 80 bits (Intel only)

s exp frac

s exp frac

s exp frac

1 8 23

1 11 52

1 15 63 or 64

10

University of Washington

Normalization and Special
Values

 “Normalized” means mantissa has form 1.xxxxx
0.011 x 25 and 1.1 x 23 represent the same number, but the latter makes
better use of the available bits
Since we know the mantissa starts with a 1, don't bother to store it

 How do we do 0? How about 1.0/0.0?

11

University of Washington

Normalization and Special
Values

 “Normalized” means mantissa has form 1.xxxxx
0.011 x 25 and 1.1 x 23 represent the same number, but the latter makes
better use of the available bits
Since we know the mantissa starts with a 1, don't bother to store it

 Special values:
The float value 00...0 represents zero
If the exp == 11...1 and the mantissa == 00...0, it represents ∞
E.g., 10.0 / 0.0 → ∞
If the exp == 11...1 and the mantissa != 00...0, it
represents NaN
“Not a Number”
Results from operations with undefined result

� E.g., 0 * ∞

12

University of Washington

How do we do operations?
 Is representation exact?
 How are the operations carried out?

13

University of Washington

Floating Point Operations: Basic
Idea
 x +f y = Round(x + y)

 x *f y = Round(x * y)

 Basic idea
 First compute exact result
 Make it fit into desired precision

 Possibly overflow if exponent too large
 Possibly round to fit into frac

14

University of Washington

Floating Point Multiplication
(–1)s1 M1 2E1

 * (–1)s2 M2 2E2

 Exact Result: (–1)s M 2E

 Sign s: s1 ^ s2
 Significand M: M1 * M2
 Exponent E: E1 + E2

 Fixing
 If M ≥ 2, shift M right, increment E
 If E out of range, overflow
 Round M to fit frac precision

 Implementation
 What is hardest?

15

University of Washington

Floating Point
Addition

(–1)s1 M1 2E1 + (-1)s2 M2 2E2

Assume E1 > E2

 Exact Result: (–1)s M 2E

 Sign s, significand M:
 Result of signed align & add

 Exponent E: E1

 Fixing
 If M ≥ 2, shift M right, increment E
 if M < 1, shift M left k positions, decrement E by k
 Overflow if E out of range
 Round M to fit frac precision

(–1)s1 M1

(–1)s2 M2

E1–E2

+

(–1)s M

16

University of Washington

Hmm… if we round at every
operation…

17

University of Washington

Mathematical Properties of FP
Operations
 Not really associative or distributive due to rounding
 Infinities and NaNs cause issues
 Overflow and infinity

18

University of Washington

Floating Point in C
 C Guarantees Two Levels

float single precision
double double precision

 Conversions/Casting
 Casting between int, float, and double changes bit

representation
 Double/float → int

 Truncates fractional part
 Like rounding toward zero
 Not defined when out of range or NaN: Generally

sets to TMin
 int → double

 Exact conversion, why?
 int → float

 Will round according to rounding mode

19

University of Washington

Memory Referencing Bug
double fun(int i)
{
 volatile double d[1] = {3.14};
 volatile long int a[2];
 a[i] = 1073741824; /* Possibly out of bounds */
 return d[0];
}

fun(0) –> 3.14
fun(1) –> 3.14
fun(2) –> 3.1399998664856
fun(3) –> 2.00000061035156
fun(4) –> 3.14, then segmentation fault

Saved State
d7 … d4
d3 … d0
a[1]
a[0] 0

1
2
3
4

Location accessed
by fun(i)

University of Washington

Floating Point and the
Programmer#include <stdio.h>

int main(int argc, char* argv[]) {

 float f1 = 1.0;
 float f2 = 0.0;
 int i;
 for (i=0; i<10; i++) {
 f2 += 1.0/10.0;
 }

 printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
 printf("f1 = %10.8f\n", f1);
 printf("f2 = %10.8f\n\n", f2);

 f1 = 1E30;
 f2 = 1E-30;
 float f3 = f1 + f2;
 printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");

 return 0;
}

University of Washington

Floating Point and the
Programmer#include <stdio.h>

int main(int argc, char* argv[]) {

 float f1 = 1.0;
 float f2 = 0.0;
 int i;
 for (i=0; i<10; i++) {
 f2 += 1.0/10.0;
 }

 printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
 printf("f1 = %10.8f\n", f1);
 printf("f2 = %10.8f\n\n", f2);

 f1 = 1E30;
 f2 = 1E-30;
 float f3 = f1 + f2;
 printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");

 return 0;
}

$./a.out
0x3f800000 0x3f800001
f1 = 1.000000000
f2 = 1.000000119

f1 == f3? yes

22

University of Washington

Summary
 As with integers, floats suffer from the fixed
number of bits
 available to represent them
Can get overflow/underflow, just like ints
Some “simple fractions” have no exact representation

 E.g., 0.1
Can also lose precision, unlike ints

 “Every operation gets a slightly wrong
result”

 Mathematically equivalent ways of writing an
expression may
 compute differing results

 NEVER test floating point values for equality!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

