

Encoding Integers

- The hardware (and C) supports two flavors of integers:
- unsigned - only the non-negatives
- signed - both negatives and non-negatives
- There are only $\mathbf{2}^{\mathbf{w}}$ distinct bit patterns of W bits, so...
- Can't represent all the integers
- Unsigned values are $0 \ldots \mathbf{2}^{\mathbf{w}}-1$
- Signed values are -2 $\mathbf{2}^{\mathrm{W}-1} . . . \mathbf{2}^{\mathrm{W}-1}-1$

Unsigned Integers

- Unsigned values are just what you expect
- $b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}=b_{7} \mathbf{2}^{7}+b_{6} \mathbf{2}^{\mathbf{6}}+b_{5} \mathbf{2}^{\mathbf{5}}+\ldots+b_{1} \mathbf{2}^{1}+b_{0} \mathbf{2}^{\mathbf{0}}$

Interesting aside: $1+2+4+8+\ldots+2^{\mathrm{N}-1}=\mathbf{2}^{\mathrm{N}}-1$

- You add/subtract them using the normal
 "carry/borrow" rules, just in binary
- unsigned integers in C are not the same thing as pointers
- Similar: There are no negative memory addresses
- Similar: Years ago sizeof(int) = sizeof(int *)
- Not Similar: Today and in well written code for all time, sizeof(int) != sizeof(int *)

Signed Integers

- Let's do the natural thing for the positives
- They correspond to the unsigned integers of the same value

Example (8 bits): $0 \times 00=0,0 \times 01=1, \ldots, 0 \times 7 F=127$

- But, we need to let about half of them be negative
- Use the high order bit to indicate something like 'negative'
- Historically, there have been 3 flavors in use... but today there is only 1 (and for good reason).
- Bad ideas (but were commonly used in the past!)
- sign/magnitude
- one's complement
- Good idea:
- Two's complement

Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
- Possibility 1: 10000001 ${ }_{2}$

Use the MSB for "+ or -", and the other bits to give magnitude

Sign-and-Magnitude Negatives

- How should we represent $\mathbf{- 1}$ in binary?
- Possibility 1: 10000001 ${ }_{2}$

Use the MSB for "+ or -", and the other bits to give magnitude
(Unfortunate side effect: there are two representations of $\mathbf{0}$!)

Sign-and-Magnitude Negatives

- How should we represent $\mathbf{- 1}$ in binary?
- Possibility 1: 10000001 ${ }_{2}$

Use the MSB for "+ or -", and the other bits to give magnitude
Another problem: math is cumbersome
4-3!=4+(-3)

Ones' Complement Negatives

- How should we represent -1 in binary?
- Possibility 2: $\mathbf{1 1 1 1 1 1 1 0}_{2}$

Negative numbers: bitwise complements of positive numbers
It would be handy if we could use the same hardware adder to add signed integers as upgsigned

Ones' Complement Negatives

- How should we represent -1 in binary?
- Possibility 2: 11111110 $_{2}$ Negative numbers: bitwise complements of positive numbers

Solves the arithmetic problem
Add Invert, add, add carry Invert and add

Ones' Complement Negatives

- How should we represent $\mathbf{- 1}$ in binary?
- Possibility 2: 11111110 $_{2}$ Negative numbers: bitwise complements of positive numbers Use the same hardware adder to add signed integers as unsigned (but we have to keep track of the end-around carry bit)

Why does it work?

- The ones' complement of a 4-bit positive number y is $1111_{2}-y$
- $0111 \equiv \mathbf{7}_{10}$
- 1111 $_{2}-$ 0111 $_{2}=1000_{2} \equiv-7_{10}$
- 1111_{2} is 1 less than $\mathbf{1 0 0 0 0}_{2}=2^{4}-1$

Ones' Complement Negatives

- How should we represent -1 in binary?
- Possibility 2: 11111110 $_{2}$ Negative numbers: bitwise complements of positive numbers (But there are still two representations of 0 !)

Two's Complement Negatives

- How should we represent -1 in binary?
- Possibility 3: 111111112

Bitwise complement plus one (Only one zero)

Two's Complement Negatives

- How should we represent -1 in binary?
- Possibility 3: 11111111

Bitwise complement plus one (Only one zero)

- Simplifies arithmetic

Use the same hardware adder to add signed integers as unsigned (simple addition; discard
Add Invert and add Invert and add

4	0100	4	0100	-4	1100
+3	+0011	-3	+1101	+3	+0011
$=7$	$=0111$	$=1$	10001	-1	1111
		drop carry	$=0001$		

Two's Complement Negatives

- How should we represent $\mathbf{- 1}$ in binary?
- Two's complement: Bitwise complement plus one

Why does it work?

- Recall: The ones' complement of a b-bit positive number y is $\left(2^{b}-1\right)-y$
- Two's complement adds one to the bitwise complement, thus, -y is $\mathbf{2}^{\mathrm{b}}-\mathrm{y}$ (or $-\mathrm{x}==(\sim \mathrm{x}+1)$)
- $-\mathbf{y}$ and $2^{b}-y$ are equal mod 2^{b}
(have the same remainder when divided by $2^{\text {b }}$)
- Ignoring carries is equivalent to doing arithmotio mon 2b

Two's Complement Negatives

- How should we represent -1 in binary?
- Two's complement: Bitwise complement plus one

```
What should the 8-bit representation of -1 be?
    00000001
t???????? (want whichever bit string gives
right result)
    00000000
\begin{tabular}{rr}
00000010 & 00000011 \\
\(+? ? ? ? ? ? ? ?\) \\
\hline 00000000 & \(+? ? ? ? ? ? ? ?\) \\
00000000
\end{tabular}
```


Unsigned \& Signed Numeric

X	Unsigned	Signed
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

- Both signed and unsigned integers have limits
- If you compute a number that is too big, you wrap: $6+4$ = ? $15 \mathrm{U}+2 \mathrm{U}=$?
- If you compute a number that is too small, you wrap: $-7-3=$? $0 U-2 U=$?
- Answers are only correct mod 2^{b}
- The CPU may be capable of "throwing an exception" for overflow on signed values
- It won't for unsigned
- But C and Java just cruise along silently when overflow occurs...

Mapping Signed \leftrightarrow Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Numeric Ranges

- Unsigned Values
- UMin = 0
000... 0
- UMax $=2^{w}-1$ 111... 1

Two's Complement Values
TMin $\quad=\quad-2^{w-1}$
100... 0

TMax $=\quad 2^{\mathrm{w}-1}-1$ 011... 1

Other Values
Minus 1
111... 1 0xFFFFFFFF (32 bits)

Values for W = 16

	Decimal	Hex	Binary	
UMax	65535	FF FF	11111111	11111111
TMax	32767	7F FF	01111111	11111111
TMin	-32768	80 00	10000000	00000000
-1	-1	FF FF	11111111	11111111
0	0	00	00	00000000
00000000				

Values for Different Word Sizes

	W			
	$\mathbf{8}$	$\mathbf{1 6}$	$\mathbf{3 2}$	
UMax	255	65,535	$\mathbf{4 , 2 9 4 , 9 6 7 , 2 9 5}$	
TMax	127	32,767	$2,147,483,647$	
TMin	-128	$-32,768$	$-2,147,483,648$	

- Observations
- |TMin $\mid=$ TMax +1
- Asymmetric range
- UMax = 2*TMax + 1
- C Programming
- \#include <limits.h>
- Declares constants, e.g.,
- ULONG_MAX
- LONG_MAX
- LONG_MIN
- Values platform specific

Conversion Visualized

2's Comp. \rightarrow Unsigned
Ordering Inversion
Negative \rightarrow Big Positive

Signed vs. Unsigned in C

- Constants
-By default are considered to be signed integers
-Unsigned if have " U " as suffix
-OU, 4294967259U
-Size can be typed too 1234567890123456 ULL
- Casting
-int tx, ty;
-unsigned ux, uy;
-Explicit casting between signed \& unsigned same as U2T and T2U
\cdot tx = (int) ux;
-uy = (unsigned) ty;
-Implicit casting also occurs via assignments and procedure calls
-tx $=u x ;$
-uy $=t y ;$

Casting Surprises

Expression Evaluation

If mix unsigned and signed in single expression, signed values implicitly cast to unsigned
Including comparison operations $<,>,==,<=,>=$
Examples for $\mathbf{W}=32$: TMIN $=\mathbf{- 2 , 1 4 7 , 4 8 3 , 6 4 8 ~ T M A X ~}=$ 2,147,483,647

Constant
0
-1
-1
2147483647 2147483647 U

-1

(unsigned)-1
2147483647
2147483647

Constant ${ }_{2}$
$0 U$
0
OU
-2147483647-1
-2147483647-1
-2
-2
2147483648 U
(int) 2147483648U

Relation Enyaluation
< signed
$>\quad$ unsigned
$>\quad$ signed
$<\quad$ unsigned
$>$ signed
$>\quad$ unsigned
$<\quad$ unsigned signed

General advice on types

- Be as explicit as possible
typedef unsigned int uint32_t;
uint32_t \mathbf{i}; for($\mathbf{i}=\mathbf{0} \mathbf{;} \mathbf{i}<\mathbf{n} ; \mathbf{i + +}$) $\{\ldots\}$
- Use modern C dialect features / use the type system to catch errors at compile time:
// fast and loose
\#define my_constant 1234
// better
\#define my_constant 1234U
// generally (but not always) best
const unsigned int my_constant = 1234;
- Use opaque types as much as possible
struct my_type; struct my_type *allocate_object_of_my_type();
- C compilers have a lot of legacy cruft in this area. Much can go wrong...
e.g. is unsigned long long x:4; a 4 bit field of a 64 bit type? or a 32 bit one?

Shift Operations

Left shift: $\mathrm{x} \lll \mathrm{y}$	Argument x	01100010
Shift bit-vector x left by y positic Throw away extra bits on lef	<<3	00010000
th 0s on right	Logical >> 2	00011000
Right shift: $\mathrm{x} \ggg \mathrm{y}$	Arithmetic >> 2	00011000

Shift bit-vector x right by y positions
Throw away extra bits on rig Logical shift (for unsigned)

Fill with 0s on left
Arithmetic shift (for signed)
Replicate most significant bi Maintain sign of x

Argument x	10100010
$\ll 3$	00010000
Logical $\gg 2$	00101000
Arithmetic >> 2	11101000

Divide by 2**y
correct truncation (towards $\mathbf{0}$) requiresinat if $y<0$ or $y \geq$ some care with signed numbers word_size?

Using Shifts and Masks

Extract $2^{\text {nd }}$ most significant byte of an integer
First shift: $\quad x \gg(2$ * 8)
Then mask: (x >> 16) \& 0xFF

x	01100001011000100110001101100100
$x \gg 16$	00000000000000000110000101100010
$(x \gg 16) \& 0 x F F$	00000000000000000000000011111111
	000000000000000000000001100010

Extracting the sign bit
($x \gg 31$) \& 1 - need the "\& 1 " to clear out all other bits except LSB
Conditionals as Boolean expressions (assuming x is 0 or 1 here)
if $(x) a=y$ else $a=z ; \quad$ which is the same as $\quad a=x ? y: z ;$

Sign Extension

Task:

Given w-bit signed integer \mathbf{x}
Convert it to w+k-bit integer with same value

Rule:

Make k copies of sign bit:

Sign Extension Example

```
short int x = 12345;
int ix = (int) x;
short int y = -12345;
int iy = (int) y;
```

	Decimal	Hex			Binary		
x	12345		3039		00110000	01101101	
$i x$	12345	00	00	30	39	00000000	
y	-12345		CF C7		000000	00110000	
01101101							
$i y$	-12345	FF FF CF C7	11111111	11111111	11001111	11000111	

Converting from smaller to larger integer data type

C automatically performs sign extension
You might have to if converting a bizarre data type to a native one (e.g. PMC counters are anmotimne 48 hital

