
University of Washington

University of Washington

Encoding Integers
 The hardware (and C) supports two

flavors of integers:
 unsigned – only the non-negatives
 signed – both negatives and non-negatives

 There are only 2W distinct bit patterns of
W bits, so...
 Can't represent all the integers
 Unsigned values are 0 ... 2W-1
 Signed values are -2W-1 ... 2W-1-1

University of Washington

Unsigned Integers
 Unsigned values are just what you expect

 b7b6b5b4b3b2b1b0 = b72
7 + b62

6 + b52
5 + … + b12

1 + b02
0

� Interesting aside: 1+2+4+8+...+2N-1 = 2N -1

 You add/subtract them using the normal
“carry/borrow” rules, just in binary

 unsigned integers in C are not the same thing as
pointers

 Similar: There are no negative memory addresses
 Similar: Years ago sizeof(int) = sizeof(int *)
 Not Similar: Today and in well written code for all time,

sizeof(int) != sizeof(int *)

 00111111
+00000001
 01000000

 63
+ 1
 64

University of Washington

Signed Integers
 Let's do the natural thing for the positives

 They correspond to the unsigned integers of the same
value

� Example (8 bits): 0x00 = 0, 0x01 = 1, …, 0x7F = 127

 But, we need to let about half of them be
negative

 Use the high order bit to indicate something like
'negative’

 Historically, there have been 3 flavors in use... but
today there is only 1 (and for good reason).

 Bad ideas (but were commonly used in the past!)
 sign/magnitude
 one’s complement

 Good idea:
 Two’s complement

 Why do we study the bad ones? Floating point still uses
them to this day (and here they are not that bad...)

University of Washington

Sign-and-Magnitude Negatives
 How should we represent -1 in binary?

 Possibility 1: 100000012

Use the MSB for “+ or -”, and the other bits to
give magnitude

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6
– 7

University of Washington

Sign-and-Magnitude Negatives
 How should we represent -1 in binary?

 Possibility 1: 100000012

Use the MSB for “+ or -”, and the other bits to
give magnitude
(Unfortunate side effect: there are two
representations of 0!)

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6
– 7

University of Washington

Sign-and-Magnitude Negatives
 How should we represent -1 in binary?

 Possibility 1: 100000012

Use the MSB for “+ or -”, and the other bits to
give magnitude
Another problem: math is cumbersome

4 – 3 != 4 + (-3) 0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6
– 7

University of Washington

Ones’ Complement Negatives
 How should we represent -1 in binary?

 Possibility 2: 111111102

Negative numbers: bitwise complements of positive
numbers
It would be handy if we could use the same hardware
adder to add signed integers as unsigned

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 7

– 6

– 5

– 4

– 3

– 2

– 1
– 0

University of Washington

Ones’ Complement Negatives
 How should we represent -1 in binary?

 Possibility 2: 111111102

Negative numbers: bitwise complements of
positive numbers

� Solves the arithmetic problem

end-around carry

University of Washington

Ones’ Complement Negatives
 How should we represent -1 in binary?

 Possibility 2: 111111102

Negative numbers: bitwise complements of
positive numbers
Use the same hardware adder to add signed
integers as unsigned (but we have to keep track
of the end-around carry bit)

Why does it work?
• The ones’ complement of a 4-bit positive number

y
is 11112 – y

• 0111 ≡ 710

• 11112 – 01112 = 10002 ≡ –710

• 11112 is 1 less than 100002 = 24 – 1
• –y is represented by (24 – 1) – y

University of Washington

Ones’ Complement Negatives
 How should we represent -1 in binary?

 Possibility 2: 111111102

Negative numbers: bitwise complements of
positive numbers
(But there are still two representations of 0!)

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 7

– 6

– 5

– 4

– 3

– 2

– 1
– 0

University of Washington

Two's Complement Negatives
 How should we represent -1 in binary?

 Possibility 3: 111111112

Bitwise complement plus one
(Only one zero)

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

University of Washington

Two's Complement Negatives
 How should we represent -1 in binary?

 Possibility 3: 111111112

Bitwise complement plus one
(Only one zero)

 Simplifies arithmetic
Use the same hardware adder to add signed
integers as unsigned (simple addition; discard
the highest carry bit)

University of Washington

Two's Complement Negatives
 How should we represent -1 in binary?

 Two’s complement: Bitwise complement plus
one

Why does it work?
• Recall: The ones’ complement of a b-bit positive

number y
is (2b – 1) – y

• Two’s complement adds one to the bitwise
complement,
thus, -y is 2b – y (or -x == (~x + 1))

• –y and 2b – y are equal mod 2b

(have the same remainder when divided by
2b)

• Ignoring carries is equivalent to doing
arithmetic mod 2b

University of Washington

Two's Complement Negatives
 How should we represent -1 in binary?

 Two’s complement: Bitwise complement plus
one

� What should the 8-bit representation of -1 be?
 00000001
+???????? (want whichever bit string gives
right result)
 00000000

 00000010 00000011
+???????? +????????
 00000000 00000000

University of Washington

Unsigned & Signed Numeric
Values  Both signed and unsigned integers

have limits
 If you compute a number that is too big,

you wrap: 6 + 4 = ? 15U + 2U = ?
 If you compute a number that is too small,

you wrap: -7 – 3 = ? 0U – 2U = ?
 Answers are only correct mod 2b

 The CPU may be capable of
“throwing an exception” for overflow
on signed values

 It won't for unsigned
 But C and Java just cruise along

silently when overflow occurs...

X SignedUnsigned
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

–88
–79
–610
–511
–412
–313
–214
–115

1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7

26

University of Washington

Mapping Signed ↔ Unsigned
SignedSigned

0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

UnsignedUnsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

BitsBits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

=

+16

27

University of Washington

Numeric Ranges
 Unsigned Values

 UMin = 0
000…0

 UMax = 2w – 1
111…1

 Two’s Complement Values
TMin = –2w–1

100…0
TMax = 2w–1 – 1
011…1
 Other Values
Minus 1
111…1 0xFFFFFFFF (32 bits)

Values for W = 16

University of Washington

Values for Different Word
Sizes

29

 Observations
 |TMin | = TMax + 1
 Asymmetric range
 UMax = 2 * TMax + 1

 C Programming
 #include <limits.h>
 Declares constants, e.g.,
 ULONG_MAX
 LONG_MAX
 LONG_MIN
 Values platform specific

University of Washington

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned
Range

Conversion Visualized
2’s Comp. → Unsigned

Ordering Inversion

Negative → Big Positive

30

University of Washington

Signed vs. Unsigned in C
 Constants
By default are considered to be signed integers
Unsigned if have “U” as suffix
0U, 4294967259U
Size can be typed too 1234567890123456ULL
 Casting
int tx, ty;
unsigned ux, uy;
Explicit casting between signed & unsigned same as U2T and T2U
tx = (int) ux;
uy = (unsigned) ty;
Implicit casting also occurs via assignments and procedure calls
tx = ux;
uy = ty;

31

University of Washington

0 0U == unsigned
-1 0 < signed
-1 0U > unsigned
2147483647 -2147483648 > signed
2147483647U -2147483648 < unsigned
-1 -2 > signed
(unsigned) -1 -2 > unsigned
 2147483647 2147483648U < unsigned
 2147483647 (int) 2147483648U > signed

Casting Surprises
Expression Evaluation

If mix unsigned and signed in single expression,
signed values implicitly cast to unsigned

Including comparison operations <, >, ==, <=, >=
Examples for W = 32: TMIN = -2,147,483,648 TMAX =

2,147,483,647

Constant1 Constant2 Relation Evaluation
0 0U
-1 0
-1 0U
2147483647 -2147483647-1
2147483647U -2147483647-1
-1 -2
(unsigned)-1 -2
 2147483647 2147483648U
 2147483647 (int) 2147483648U 32

University of Washington

General advice on types
- Be as explicit as possible

typedef unsigned int uint32_t;

uint32_t i; for(i = 0; i < n; i++) { ... }

- Use modern C dialect features / use the type system to catch errors at
compile time:

// fast and loose

#define my_constant 1234

// better

#define my_constant 1234U

// generally (but not always) best

const unsigned int my_constant = 1234;

- Use opaque types as much as possible

struct my_type; struct my_type *allocate_object_of_my_type();

- C compilers have a lot of legacy cruft in this area. Much can go wrong...

e.g. is unsigned long long x:4; a 4 bit field of a 64 bit type? or a 32
bit one?

University of Washington

Shift Operations
Left shift: x << y

Shift bit-vector x left by y positions
Throw away extra bits on left
Fill with 0s on right

Multiply by 2**y
Right shift: x >> y

Shift bit-vector x right by y positions
Throw away extra bits on right

Logical shift (for unsigned)
Fill with 0s on left

Arithmetic shift (for signed)
Replicate most significant bit on right
Maintain sign of x

Divide by 2**y
correct truncation (towards 0) requires

some care with signed numbers

01100010Argument x

00010000<< 3

00011000Logical >> 2

00011000Arithmetic >> 2

10100010Argument x

00010000<< 3

00101000Logical >> 2

11101000Arithmetic >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

33

What if y < 0 or y ≥
word_size?

University of Washington

Using Shifts and Masks

Extract 2nd most significant byte of an integer
First shift: x >> (2 * 8)
Then mask: (x >> 16) & 0xFF

Extracting the sign bit
(x >> 31) & 1 - need the “& 1” to clear out all other bits

except LSB

Conditionals as Boolean expressions (assuming x
is 0 or 1 here)
if (x) a=y else a=z; which is the same as a = x ? y : z;
Can be re-written as: a = ((x << 31) >> 31) & y + (!x << 31) >> 31) &

z

34

01100001 01100010 01100011 01100100 x

00010000x >> 16

00011000
(x >> 16) & 0xFF

0001000000000000 00000000 01100001 01100010

0001100000000000 00000000 00000000 11111111
00000000 00000000 00000000 01100010

University of Washington

Sign Extension
Task:

Given w-bit signed integer x

Convert it to w+k-bit integer with same value

Rule:
Make k copies of sign bit:

X ′ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0
k copies of MSB

• • •X

X ′ • • • • • •

• • •

w

wk
35

University of Washington

Sign Extension Example

Converting from smaller to larger integer data
type

C automatically performs sign extension

You might have to if converting a bizarre data
type to a native one (e.g. PMC counters are
sometimes 48 bits)

 short int x = 12345;
 int ix = (int) x;
 short int y = -12345;
 int iy = (int) y;

Decimal Hex Binary
x 12345 30 39 00110000 01101101
ix 12345 00 00 30 39 00000000 00000000 00110000 01101101
y -12345 CF C7 11001111 11000111
iy -12345 FF FF CF C7 11111111 11111111 11001111 11000111

36

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

