
University of Washington

The Hardware/Software Interface
CSE351 Winter 2012
1st Lecture, Jan 4th

Instructor:
Mark Oskin

Teaching Assistants:
Nick Burgan-lllig, Cortney Corbin, Chee Wei Tang

1
Friday, January 6, 12

University of Washington

Goals for today
 Describe where the class fits in the CSE structure
 Cover some mechanical details
 Introduce the class

 Who am I?
 Who are you?
 How would I take this class?

 Discuss broad themes of the class

2
Friday, January 6, 12

University of Washington

CSE351’s role in new CSE
Curriculum
 Pre-requisites

 142 and 143: Intro Programming I and II

 One of 6 core courses
 311: Foundations I
 312: Foundations II
 331: SW Design and Implementation
 332: Data Abstractions
 351: HW/SW Interface
 352: HW Design and Implementation

 351 sets the context for many follow-on courses

3
Friday, January 6, 12

University of Washington

CSE351’s place in new CSE
Curriculum

4

CSE351

CSE451
Op Systems

CSE401
Compilers

Concurrency

CSE333
Systems Prog

Performance

CSE484
Security

CSE466
Emb Systems

CS 143
Intro Prog II

CSE352
HW Design

Comp. Arch.

CSE461
Networks

Machine
Code

Distributed
Systems

CSE477/481
Capstones

The HW/SW Interface
Underlying principles linking
hardware and software

Execution
Model

Real-Time
Control

Friday, January 6, 12

University of Washington

Course Perspective
 Most systems courses are Builder-Centric

 Computer Architecture
 Design pipelined processor in Verilog

 Operating Systems
 Implement large portions of operating system

 Compilers
 Write compiler for simple language

 Networking
 Implement and simulate network protocols

5
Friday, January 6, 12

University of Washington

Course Perspective (Cont.)
 This course is Programmer-Centric

 Purpose is to show how software really works
 By understanding the underlying system,

one can be more effective as a programmer
 Better debugging
 Better basis for evaluating performance
 How multiple activities work in concert (e.g., OS and user

programs)
 Not just a course for dedicated hackers

 What every CSE major needs to know
 Provide a context in which to place the other CSE courses

you’ll take

6
Friday, January 6, 12

University of Washington

Textbooks
 Computer Systems: A Programmer’s Perspective,

2nd Edition
 Randal E. Bryant and David R. O’Hallaron
 Prentice-Hall, 2010
 http://csapp.cs.cmu.edu
 This book really matters for the course!

 How to solve labs
 Practice problems typical of exam problems

 A good C book.
 C: A Reference Manual (Harbison and Steele)
 The C Programming Language (Kernighan and Ritchie)

7
Friday, January 6, 12

http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/

University of Washington

Course Components
 Lectures (~30)

 Higher-level concepts – I’ll assume you’ve done the reading
in the text

 Sections (~10)
 Applied concepts, important tools and skills for labs,

clarification of lectures, exam review and preparation
 Written assignments (4)

 Problems from text to solidify understanding
 Labs (4 or 5)

 Provide in-depth understanding (via practice) of an aspect of
systems

 Exams (midterm + final)
 Test your understanding of concepts and principles

8
Friday, January 6, 12

University of Washington

Class Cancelations
 Definite: Jan 18th & 20th - @ NSF
 Possible (but unlikely): Feb 1st & 3rd -

@SIGMETRICS PC

9
Friday, January 6, 12

University of Washington

Resources
 Course Web Page

 http://www.cse.washington.edu/351
 Copies of lectures, assignments, exams

 Course Discussion Board
 Keep in touch outside of class – help each other
 Staff will monitor and contribute

 Course Mailing List
 Low traffic – mostly announcements; you are already

subscribed
 Staff email

 Things that are not appropriate for discussion board or
better offline

 Anonymous Feedback (will be linked from
homepage)
 Any comments about anything related to the course

where you would feel better not attaching your name
10

Friday, January 6, 12

http://www.cse.washington.edu/351
http://www.cse.washington.edu/351
http://www.cse.washington.edu/351
http://www.cse.washington.edu/351

University of Washington

Policies: Grading
 Exams: weighted 1/3 (midterm), 2/3 (final)
 Written assignments: weighted according to effort

 We’ll try to make these about the same
 Labs assignments: weighted according to effort

 These will likely increase in weight as the quarter progresses

 Grading:
 25% written assignments
 35% lab assignments
 40% exams

 You may turn in up to 2 assignments 3 days late
throughout the quarter IF you compose an excuse in the
form of Shakespearian sonnet and send it to the TA’s and
myself ON OR BEFORE the due date. Witty sonnets are
preferred. Sonnets are (anonymously) posted on the class
webpage.

11
Friday, January 6, 12

University of Washington

Taking 351
 How to succeed:

 You should follow your own best learning style, but my
recommendation would be:

 Attend lecture and pay attention (Facebook can wait)
 Don’t take notes, the slides will be posted
 Read the book ahead of time ... or at least read it at pace

– (I confess I rarely read ahead of time myself)
 Do each assignment well

– Unlike Neoclassical Carpet Design, in CSE is a major where you
often can know if you got it right before handing anything in

 Continuously assess what you don’t know or are confused about and
ask for help!

 How to fail:
 Don’t attend class, don’t pay attention, don’t read, start assignments late,

do them poorly, don’t figure out what you don’t know, don’t ask for help
until you receive a failing exam score, etc, etc

 How to really fail:
 Cheat

12
Friday, January 6, 12

University of Washington

Welcome to CSE351!
 Let’s have fun
 Let’s learn – together
 Let’s communicate

 I’ve never taught with slides before, so this is going to be
a learning experience for me as well
 Seriously. I’m a blackboard/discussion style teacher

 Many thanks to the many instructors who have shared
their lecture notes – I will be borrowing liberally through
the qtr – they deserve all the credit, the errors are all mine
 UW: Luis Ceze (Fall 2011), Gaetano Borriello (Spring 2010)
 CMU: Randy Bryant, David O’Halloran, Gregory Kesden, Markus Püschel
 Harvard: Matt Welsh
 UW: Tom Anderson, John Zahorjan

13
Friday, January 6, 12

University of Washington

14

Who is Mark?

Grew up in socal, so I talk weird.
Can’t spel, or form a grammatically correct sentence

(I have no idea what an adverb is).
I am bad with names, but I will try!

When my daughter (Sky -- see photo) isn’t consuming
every bit of my free (and not so free) time, I spend a

lot of time on the water and my motorcycle.
Joined UW faculty in 2001

Nominally I do computer architecture
Been on leave for 3 years founding a startup

Just coming back... ...and everything has changed..
351 is just as new to me as it is to you!

Friday, January 6, 12

University of Washington

15

Who are you?

 70+ students

 What is hardware? Software?
 More important question: Why is the boundary where it is?

 What is an interface?

 Why do we need a hardware/software interface?

 Who has written programs in assembly before?

Friday, January 6, 12

University of Washington

SPEAK
This class will be drudgery for all if you stay silent

.... and that means everyone. Yes, even you in the back row.

16
Friday, January 6, 12

University of Washington

Take a deep breath
 ... and purge java from your brain

 it was corrupting your mind anyway

17
Friday, January 6, 12

University of Washington

Take a deep breath
 ... and purge java from your brain

 it was corrupting your mind anyway
 But in all seriousness:

 java, and other HLL (python, etc) are great and most
production code is written in them these days

 Developers $$ >> Cycles $$
 A lot of code just doesn’t have to run fast... until it does,

and then HLL’s spawn work (witness: FaceBook, AMZN, etc)
 But I digress...

 This course is about how machines actually work
 C has been called a “high level assembly language” as it’s

semantics closely mirror the underlying hardware.

18
Friday, January 6, 12

University of Washington

C vs. Assembler vs. Machine
Programs

 The three program fragments are equivalent
 You'd rather write C!
 The hardware likes bit strings!

 The machine instructions are actually much shorter than the
bits required torepresent the characters of the assembler
code

if (x != 0) y = (y+z) / x; cmpl $0, -4(%ebp)
 je .L2
 movl -12(%ebp), %eax
 movl -8(%ebp), %edx
 leal (%edx,%eax), %eax
 movl %eax, %edx
 sarl $31, %edx
 idivl -4(%ebp)
 movl %eax, -8(%ebp)
.L2:

1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100
10001001010001000010010000011000

19
Friday, January 6, 12

University of Washington

HW/SW Interface: The Historical
Perspective
 Hardware started out quite primitive

 Design was expensive ⇒ the instruction set was very simple
− E.g., a single instruction can add two integers

 Software was also very primitive

Hardware

Architecture Specification (Interface)

20
Friday, January 6, 12

University of Washington

HW/SW Interface: Assemblers
 Life was made a lot better by assemblers

 1 assembly instruction = 1 machine instruction (more or
less), but...

 different syntax: assembly instructions are character strings,
not bit strings

Hardware
User

Program
in

Asm

Assembler specification

Assembler

21
Friday, January 6, 12

University of Washington

HW/SW Interface: Higher Level Languages (HLL's)
 Higher level of abstraction:

 1 HLL line is compiled into many (many) assembler lines

Hardware
User

Program
in C

C language specification

AssemblerC
Compiler

22
Friday, January 6, 12

University of Washington

HW/SW Interface: An even higher Level

Hardware

User
Program

in java/python/
etc

interpretor/
JIT

Compiler/
Interpreter

23

Abstract
assembly

Friday, January 6, 12

University of Washington

HW/SW Interface: Code / Compile / Run Times

Hardware
User

Program
in C

AssemblerC
Compiler

.exe
File

Code Time Compile Time Run Time

Note: The compiler and assembler are just programs, developed using
 this same process. In fact, it is generally considered important that

a C compiler can compile it’s self (self-hosting it is called).
(Existential question: but who compiles it the first time???)

24
Friday, January 6, 12

University of Washington

Themes

Big and little
Four important realities

25
Friday, January 6, 12

University of Washington

3 Fused Concepts
 The HW/SW Interface

 Often called the “Architecture”

 The HW Implementation
 Often called the “Microarchitecture”

 The SW stack

 We will endeavor to clearly separate these
concepts in this class, however, it is not always
possible.

26
Friday, January 6, 12

University of Washington

The Big Theme
 THE HARDWARE/SOFTWARE INTERFACE
 How does the hardware (0s and 1s, processor

executing instructions) relate to the software?
 Computing is about abstractions (but don’t forget

reality)
 What are the abstractions that we use?
 What do YOU need to know about them?

 When do they break down and you have to peek under
the hood?

 What bugs can they cause and how do you find them?
 Become a better programmer and begin to

understand the thought processes that go into
building computer systems

27
Friday, January 6, 12

University of Washington

Little Theme 1: Representation
 All digital systems represent everything as 0s and

1s (today)
 Everything includes:

 Numbers – integers and floating point
 Characters – the building blocks of strings
 Instructions – the directives to the CPU that make up a

program
 Pointers – addresses of data objects in memory

 These encodings are stored in registers, caches,
memories, disks, etc.

 They all need addresses
 A way to find them
 Find a new place to put a new item
 Reclaim the place in memory when data no longer needed

28
Friday, January 6, 12

University of Washington

Little Theme 2: Translation
 There is a big gap between how we think about

programs and data and the 0s and 1s of
computers

 Need languages to describe what we mean
 Languages need to be translated one step at a

time
 Word-by-word
 Phrase structures
 Grammar

 We know Java as a programming language
 Have to work our way down to the 0s and 1s of computers
 Try not to lose anything in translation!
 We’ll encounter Java byte-codes, C language, assembly

language, and machine code (for the X86 family of CPU
architectures)

29
Friday, January 6, 12

University of Washington

Little Theme 3: Control Flow
 How do computers orchestrate the many things

they are doing – seemingly in parallel
 What do we have to keep track of when we call a

method, and then another, and then another, and
so on

 How do we know what to do upon “return”
 User programs and operating systems

 Multiple user programs
 Operating system has to orchestrate them all

 Each gets a share of computing cycles
 They may need to share system resources (memory, I/O,

disks)
 Yielding and taking control of the processor

 Voluntary or by force?
30

Friday, January 6, 12

University of Washington

Course Outcomes
 Foundation: basics of high-level programming
 Understanding of some of the abstractions that

exist between programs and the hardware they
run on, why they exist, and how they build upon
each other

 Knowledge of some of the details of underlying
implementations

 Become more effective programmers
 More efficient at finding and eliminating bugs
 Understand the many factors that influence program

performance
 Facility with some of the many languages that we use to

describe programs and data
 Prepare for later classes in CSE

31
Friday, January 6, 12

University of Washington

Reality 1: Ints ≠ Integers & Floats ≠ Reals
 Representations are finite
 Example 1: Is x2 ≥ 0?

 Floats: Yes!
 Ints:

 40000 * 40000 --> 1600000000
 50000 * 50000 --> ??

 Example 2: Is (x + y) + z = x + (y + z)?
 Unsigned & Signed Ints: Yes!
 Floats:

 (1e20 + -1e20) + 3.14 --> 3.14
 1e20 + (-1e20 + 3.14) --> ??

32

Odd factoid: if computers could do infinite
precision arithmetic in P time, then P = NP

Friday, January 6, 12

University of Washington

Code Security Example

 Similar to code found in FreeBSD’s
implementation of getpeername

 There are legions of smart people trying to find
vulnerabilities in programs. They have more time
than you and our well motivated. Your only hope
is careful thought and discipline.

33

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE]; int len = KSIZE;

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 if (KSIZE > maxlen) len = maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

Friday, January 6, 12

University of Washington

Typical Usage

34

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE]; int len = KSIZE;

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 if (KSIZE > maxlen) len = maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, MSIZE);
 printf(“%s\n”, mybuf);
}

Friday, January 6, 12

University of Washington

Malicious Usage

35

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE]; int len = KSIZE;

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 if (KSIZE > maxlen) len = maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, -MSIZE);
 . . .
}

Friday, January 6, 12

University of Washington

Reality #2: You’ve Got to Know Assembly
 Why? Because we want you to suffer?

 Builds character (“Redeem yourself Mr. Oskin!!!”)
 It is not easy

 We choose to understand assembly, ... we choose to
understand assembly, not because it is easy, but because it
is hard, because understanding how to reason about
systems requires the best of our energies and our skills,
because that challenge is one you are forced to accept as a
CSE major, one you may wish to postpone but cannot, and
one that you will win, and others will win too.

36
Friday, January 6, 12

University of Washington

Reality #2: You’ve Got to Know Assembly
 Chances are, you’ll never write a program in assembly code

 Compilers are much better and more patient than you are
 But odds are you will want to (or should want to) because the coolest

projects often require that level of thinking
 Nevertheless: Understanding assembly is the key to the

machine-level execution model
 Behavior of programs in presence of bugs... or just poorly documented

behavior
 High-level language model breaks down

 Tuning program performance
 Understand optimizations done/not done by the compiler
 Understanding sources of program inefficiency

 Implementing system software
 Operating systems must manage process state

 Creating / fighting malware
 x86 assembly is the language of choice
 Use special thingees inside processor!

37
Friday, January 6, 12

University of Washington

Assembly Code Example
 Time Stamp Counter

 Special 64-bit register in Intel-compatible machines
 Incremented every clock cycle
 Read with rdtsc instruction

 Application
 Measure time (in clock cycles) required by procedure

38

double t;
start_counter();
P();
t = get_counter();
printf("P required %f clock cycles\n", t);

Friday, January 6, 12

University of Washington

Code to Read Counter
 Write small amount of assembly code using GCC’s

asm facility
 Inserts assembly code into machine code

generated by compiler

39

/* Set *hi and *lo to the high and low order bits
 of the cycle counter.
*/

void access_counter(unsigned *hi, unsigned *lo)
{
 asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
 : "=r" (*hi), "=r" (*lo) /* output */
 : /* input */
 : "%edx", "%eax"); /* clobbered */
}

Friday, January 6, 12

University of Washington

Reality #3: Memory Matters
 Ehm, what is memory?

40
Friday, January 6, 12

University of Washington

Reality #3: Memory Matters
 Memory is not unbounded

 It must be allocated and managed
 Many applications are memory-dominated

 Memory referencing bugs are especially
pernicious
 Effects are distant in both time and space

 Memory performance is not uniform
 Cache and virtual memory effects can greatly affect program

performance
 Adapting program to characteristics of memory system can

lead to major speed improvements

41
Friday, January 6, 12

University of Washington

Memory Referencing Bug Example

42

double fun(int i)
{
 volatile double d[1] = {3.14};
 volatile long int a[2];
 a[i] = 1073741824;
 return d[0];
}

fun(0) –> 3.14
fun(1) –> 3.14
fun(2) –> 3.1399998664856
fun(3) –> 2.00000061035156
fun(4) –> 3.14, then segmentation fault

Friday, January 6, 12

University of Washington

Memory Referencing Bug Example

43

double fun(int i)
{
 volatile double d[1] = {3.14};
 volatile long int a[2];
 a[i] = 1073741824; /* Possibly out of bounds */
 return d[0];
}

fun(0) –> 3.14
fun(1) –> 3.14
fun(2) –> 3.1399998664856
fun(3) –> 2.00000061035156
fun(4) –> 3.14, then segmentation fault

Saved State

d7 … d4

d3 … d0

a[1]

a[0] 0

1

2

3

4

Location accessed
by fun(i)

Explanation:

Friday, January 6, 12

University of Washington

Memory Referencing Errors
 C (and C++) do not provide any memory protection

 Out of bounds array references
 Invalid pointer values
 Abuses of malloc/free

 Can lead to nasty bugs
 Whether or not bug has any effect depends on system and

compiler
 Action at a distance

 Corrupted object logically unrelated to one being accessed
 Effect of bug may be first observed long after it is generated

 How can I deal with this?
 Discipline, discipline, discipline / use good design principles
 Program in Java (or C#, or ML, or …)
 Understand what possible interactions may occur
 Use or develop tools to detect referencing errors

44
Friday, January 6, 12

University of Washington

Memory System Performance
Example
 Hierarchical memory organization
 Performance depends on access patterns

 Including how program steps through multi-dimensional
array

45

void copyji(int src[2048][2048],
 int dst[2048][2048])

{
 int i,j;

 for (j = 0; j < 2048; j++)
 for (i = 0; i < 2048; i++)
 dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (i = 0; i < 2048; i++)
 for (j = 0; j < 2048; j++)
 dst[i][j] = src[i][j];
}

21 times slower
(Pentium 4)

Friday, January 6, 12

University of Washington

Reality #4: Performance isn’t
counting ops
 Can you tell how fast a program is just by looking

at the code?

46
Friday, January 6, 12

University of Washington

Reality #4: Performance isn’t
counting ops
 Exact op count does not predict performance

 Easily see 10:1 performance range depending on how code
written

 Must optimize at multiple levels: algorithm, data
representations, procedures, and loops

 Must understand system to optimize performance
 How programs compiled and executed
 How memory system is organized
 How to measure program performance and identify

bottlenecks
 How to improve performance without destroying code

modularity and generality

47
Friday, January 6, 12

University of Washington

Example Matrix Multiplication
 Standard desktop computer, vendor compiler, using

optimization flags
 Both implementations have exactly the same operations count

(2n3)

48

0

12500

25000

37500

50000

0 2,250 4,500 6,750 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double

160xTriple loop
Best code (K. Goto)

Friday, January 6, 12

University of Washington

MMM Plot: Analysis

0

12500

25000

37500

50000

0 2,250 4,500 6,750 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core

49

Memory hierarchy and other optimizations: 20x

Vector instructions: 4x

Multiple threads: 4x

 Reason for 20x: blocking or tiling, loop unrolling, array
scalarization, instruction scheduling, search to find best choice

 Effect: less register spills, less L1/L2 cache misses, less TLB
misses

Friday, January 6, 12

