CSE 35I: Week 3

Tom Bergan, TA

Today

- Questions on Lab I or Hw I?
- Floating point
- Lab 2 quickstart

The most important facts about floating-point numbers

- They are approximate
- Smaller numbers are more precise
- think significant digits
- I'll show you want I mean

Floating point

When you run this code

$$
\begin{aligned}
& \text { float } x=1.3 ; \\
& \text { printf("\%f\n", x); } \\
& \text { printf("\%.15\f", x); }
\end{aligned}
$$

It prints
1.300000
1.299999952316284

Floating point

When you run this code

```
    float accountBalance = 1.30;
printf("%f\n", x);
printf("%.15\f", x);
```

It prints

$$
\begin{aligned}
& 1.300000 \\
& 1.299999952316284
\end{aligned}
$$

probably not a good idea

- instead, maybe use:
"binary-coded decimal" or
"densely packed decimal"

Floating point

This code computes $1.3 * 10$, right?

```
float \(x=1.3 ;\)
for(int i=0; i < 9; ++9)
    \(\mathrm{x}+=1.3\);
if ( \(x\) == 13.0)
    printf("same! \n");
    else
        printf("different!: \%.15f\n", x);
```

Not exactly ... it prints:
different!: 13.0000000953674316

Floating point

Here's a big number

```
float x = (float)((uint64_t)1 << 63);
printf("%f\n", x);
printf("%.15f\n", x);
```

We can represent x precisely! (it's a power of 2)

The code above prints
9223372036854775808.000000
9223372036854775808.000000000000000

Floating point

Now let's add a small number to a big number

```
float x = (float)((uint64_t)1 << 63);
x += 0.25;
printf("%.15f\n", x);
```


The 0.25 disappears:

9223372036854775808.000000000000000

Floating point

Doubles are more precise than floats

```
float x = 0.1;
double z = 0.1;
// 32-bit floating point
double z = 0.1; // 64-bit floating point
printf("%.30f\n", x);
printf("%.30f\n", x);
```

But still approximate ... the above code prints:
0.100000001490116119384765625000
0.100000000000000005551115123126

Floating point

Floating point inaccuracy is hard to reason about

- how much error does '+' introduce?
- this is a hard numerical analysis problem
- compilers make this problem even harder
- changing (x^{*} I. $3+y^{*}$ I.3) to I.3* $(x+y)$ could produce a different result

See the work of William Kahn for the gory details

 www.cs.berkely.edu/~wkahan(Turing award winner for defining IEEE floating point numbers)

Today

- Questions on Lab- I or Hw 1?
- Floating point
- Lab 2 quickstart

Demo

