
CSE 351: Week 3

Tom Bergan, TA

1

Today

•Questions on Lab 1 or Hw 1?

• Floating point

• Lab 2 quickstart

2

The most important facts about
floating-point numbers

•They are approximate

• Smaller numbers are more precise
- think significant digits
- I’ll show you want I mean

3

Floating point

4

When you run this code
 float x = 1.3;
 printf(“%f\n”, x);
 printf(“%.15\f”, x);

It prints
 1.300000
 1.299999952316284

Floating point

5

When you run this code
 float accountBalance = 1.30;
 printf(“%f\n”, x);
 printf(“%.15\f”, x);

It prints
 1.300000
 1.299999952316284

probably not a good idea
 - instead, maybe use:
 “binary-coded decimal” or
 “densely packed decimal”

Floating point

6

This code computes 1.3*10, right?
 float x = 1.3;
 for(int i=0; i < 9; ++9)
 x += 1.3;

 if (x == 13.0)
 printf(“same!\n”);
 else
 printf(“different!: %.15f\n”, x);

Not exactly ... it prints:
 different!: 13.0000000953674316

Floating point

7

Here’s a big number
 float x = (float)((uint64_t)1 << 63);
 printf(“%f\n”, x);
 printf(“%.15f\n”, x);

The code above prints
 9223372036854775808.000000
 9223372036854775808.000000000000000

We can represent x precisely! (it’s a power of 2)

Floating point

8

Now let’s add a small number to a big number
 float x = (float)((uint64_t)1 << 63);
 x += 0.25;
 printf(“%.15f\n”, x);

The 0.25 disappears:
 9223372036854775808.000000000000000

Floating point

9

Doubles are more precise than floats
 float x = 0.1; // 32-bit floating point
 double z = 0.1; // 64-bit floating point
 printf(“%.30f\n”, x);
 printf(“%.30f\n”, x);

But still approximate ... the above code prints:
 0.100000001490116119384765625000
 0.100000000000000005551115123126

Floating point

10

Floating point inaccuracy is hard to reason about
- how much error does ‘+’ introduce?

 - this is a hard numerical analysis problem

- compilers make this problem even harder
 - changing (x*1.3 + y*1.3) to 1.3*(x + y) could produce
 a different result

See the work of William Kahn for the gory details
 www.cs.berkely.edu/~wkahan
 (Turing award winner for defining IEEE floating point numbers)

http://www.cs.berkely.edu/~wkahan
http://www.cs.berkely.edu/~wkahan

Today

•Questions on Lab 1 or Hw 1?

• Floating point

• Lab 2 quickstart

11

Demo

