CSE 351: Week 2

Tom Bergan, TA

Today

®|ab |

- refresher on binary and hexadecimal
- tips and tricks

® Debugging with gdb

- this will be useful for lab 2!

Binary Numbers

00010110
27 26 25 24 23 22 2! 20
=24 + 22+2]
=16+4+2

=22

Two’s Complement

(figure stolen from lecture slides)

Two’s Complement

Computing negative one (-1):

1111
1110

0000
0001
1101 0010

1100 0011

1110 _c\1011 0100

1010 0101
+ | 1 add one e

1001 0110
thisis -1: J 111}

thisis 1: QQQ |

~ l invert each bit _4

1000 0111

(figure stolen from lecture slides)

Two’s Complement

How to negate a humber:

// Negate x without using -
int negate(int x) {

return (~x+1);

(figure stolen from lecture slides)

Hexadecimal Numbers

OOO4BEEF

167 16° 16> 16* 163 16* 16' 16°

=416+ 11163 + 14°162+ 14-16' * 15-16°

=311,023

Binary To Hexadecimal

1101 0110 =0xD6
D6

4-digit Binary to Hex

0=0000 8=1000
1=0001 9=1001
2=0010 A=1010 (=10)
This is really easy! © 3=0011 B=1011 (=11)
4=0100 C=1100 (=18)
5=0101 D=1101 (=13)
6=0110 E=1110 (=14)
7=0111 F=1111 (=15)

Lab | Hints:The ! operator

X means ‘“not x»°
- As in, “x is not true”

In C:

- 0 becomes |
- everything else becomes 0

Examples:
0=1

MN=0

42 =0

199 =0

Lab | Hints:The ! operator

A trick in C:

- Say you want to return | if x is positive, and otherwise 0
- Double-! does that:

W0 =0
ui =1
10142 = |

10199 = |

Lab | Hints

Use DeMorgan’s Laws
(A & B) = !A | IB
(A | B) = !A & !B

What does 2" look like?

all zeros except for one bit: 0000010000000
computing 2": 1 << n

What does 2"-1 look like?
all zeros then all ones: 0000001111111111

Lab | Hints

Do the easy problems first
isZero(), getByte()

Decompose into an easier problem

example: isMinusOne (x) {
return isZero(x + 1);

}
example: isOne(x) {
return isZero(x + (~1+1));
Oor: return isZero(x ~ 1);

Or: return isZero(x >> 1) & l!isZero(x);

; 2O\

use subroutines like this while
you're figuring out the problem

12

Lab | Hints

Decompose into groups of bits

example: To solve isFoo(00110101)

// \\

1sFoo (isFoo(1ll) isFoo(0l1l) isFoo(01)

Lab | Hints

Take advantage of overflow/wraparound

Example: this is a big positive number OX7FFFFFFF
olititnl..1ti

what happens when you add two of them? Ox7FFFFFFF

+ OX7FFFFFFF
it overflows to a negative number OXFFFFFFFE (thisis -2)

Today

® Lab | tips
® Debugging with gdb

~ this will be very useful for lab 2!

Demo

gdb cheat sheet

help cmd get help about command “cmd”

run X y 2 run the program with command line arguments X, y,and z
Ctrl-c stop a program (e.g., in an infinite loop)

backtrace print a stack backtrace

break foo add a breakpoint at function foo

- will stop the program when function foo is called

break foo.c:24 add a breakpoint at line 24 of file foo.c
- will stop the program when it reaches line 24 of foo

next execute one statement, then stop
step execute one statement, then stop
next and step treat function calls differently:
- next executes the entire function and then stops at the
statement after the call
- step “‘steps into”’ the function, so it stops at the first
statement inside the function

|6

print X
print x+2

call foo(x)
x /4b Oxbeef

X /4b &first
x /1lw &first

watch x

gdb cheat sheet

print variable x
print expression (x+2)

call foo with argument x and print the return value

orint the first four bytes of memory at address Oxbeef
orint the first four bytes of memory at the address (&first)

orint to first word of memory at the address (&first)
- same as previous, except prints as one 32-bit number
instead of four 8-bit numbers

add a watchpoint on x
- will stop the program when x changes

