Today Topics

- Floating Point Numbers
- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

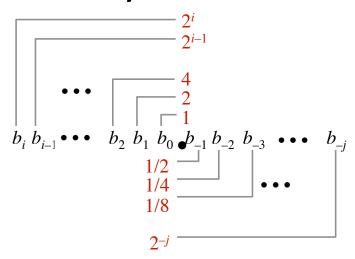
04 April 2012 Floating Point Numbers

University of Washington

Fractional binary numbers

What is 1011.101?

Fractional Binary Numbers



Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-i}^{i} b_k \cdot 2^k$

04 April 2012 Floating Point Numbers

University of Washington

Fractional Binary Numbers: Examples

■ Value Representation

- 5 and 3/4 101.11₂
- 2 and 7/810.111₂
- 63/64 0.11111₂

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of the form 0.111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$
 - Use notation 1.0 ε

Representable Numbers

Limitation

- Can only exactly represent numbers of the form x/2^k
- Other rational numbers have repeating bit representations

Value Representation

- **1/3** 0.0101010101[01]...₂
- 1/5 0.001100110011[0011]...₂
- **1/10** 0.0001100110011[0011]...₂

04 April 2012 Floating Point Numbers

University of Washingto

Fixed Point Representation

- float → 32 bits; double → 64 bits
- We might try representing fractional binary numbers by picking a fixed place for an implied binary point
 - "fixed point binary numbers"
- Let's do that, using 8 bit floating point numbers as an example
 - #1: the binary point is between bits 2 and 3 b₇ b₆ b₅ b₄ b₃ [.] b₂ b₁ b₀
 - #2: the binary point is between bits 4 and 5 b₇ b₆ b₅ [.] b₄ b₃ b₂ b₁ b₀
 - The position of the binary point affects the range and precision
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers

Fixed Point Pros and Cons

Pros

- It's simple. The same hardware that does integer arithmetic can do fixed point arithmetic
 - In fact, the programmer can use ints with an implicit fixed point
 - E.g., int balance; // number of pennies in the account
 - ints are just fixed point numbers with the binary point to the right of b₀

Cons

- There is no good way to pick where the fixed point should be
 - Sometimes you need range, sometimes you need precision
 - The more you have of one, the less of the other

04 April 2012 Floating Point Numbers

University of Washingto

What else could we do?

04 April 2012 Floating Point Numbers

IEEE Floating Point

Fixing fixed point: analogous to scientific notation

Not 12000000 but 1.2 x 10⁷; not 0.0000012 but 1.2 x 10⁻⁶

■ IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

04 April 2012 Floating Point Numbers

University of Washington

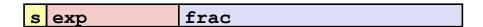
Floating Point Representation

Numerical Form:

- Sign bit s determines whether number is negative or positive
- Significand (mantissa) M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two

Encoding

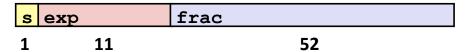
- MSB s is sign bit s
- frac field encodes M (but is not equal to M)
- exp field encodes E (but is not equal to E)



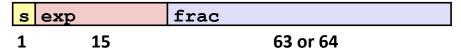
Precisions

■ Single precision: 32 bits

■ Double precision: 64 bits



Extended precision: 80 bits (Intel only)



04 April 2012 Floating Point Numbers

University of Washington

Normalization and Special Values

- "Normalized" means mantissa has form 1.xxxxx
 - 0.011 x 2⁵ and 1.1 x 2³ represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, don't bother to store it
- How do we represent 0.0? How about 1.0/0.0?

Normalization and Special Values

- "Normalized" means mantissa has form 1.xxxxx
 - 0.011 x 2⁵ and 1.1 x 2³ represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, don't bother to store it

Special values:

- The float value 00...0 represents zero
- If the exp == 11...1 and the mantissa == 00...0, it represents ∞
- E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -1.0/0.0 = -\infty$
- If the exp == 11...1 and the mantissa != 00...0, it represents NaN
 - "Not a Number"
 - Results from operations with undefined result
 - E.g., sqrt(-1), $\infty \infty$, $\infty * 0$

04 April 2012 Floating Point Numbers

University of Washingto

Normalized Values

- Condition: $exp \neq 000...0$ and $exp \neq 111...1$
- Exponent coded as biased value: exp = E + Bias
 - **exp** is an unsigned value ranging from 1 to 2^e-2
 - Allows negative values for E (= exp Bias)
 - Bias = 2^{e-1} 1, where e is number of exponent bits (bits in exp)
 - Single precision: 127 (exp: 1...254, E: -126...127)
 - Double precision: 1023 (exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: $M = 1.xxx...x_2$
 - xxx...x: bits of frac
 - Minimum when 000...0 (M = 1.0)
 - Maximum when 111...1 $(M = 2.0 \varepsilon)$
 - Get extra leading bit for "free"

Normalized Encoding Example

```
■ Value: Float F = 12345.0;

■ 12345<sub>10</sub> = 11000000111001<sub>2</sub>

= 1.1000000111001<sub>2</sub> x 2<sup>13</sup>
```

Significand

```
M = 1.1000000111001_2
frac= 1000000111001000000000_2
```

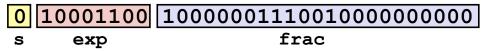
Exponent

```
E = 13

Bias = 127

exp = 140 = 10001100_2
```

■ Result:



CSE351 - Inaugural Edition - Spring 2010

15

University of Washington

How do we do operations?

- Is representation exact?
- How are the operations carried out?

Floating Point Operations: Basic Idea

- $\mathbf{x} +_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} + \mathbf{y})$
- $\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$

Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

04 April 2012 Floating Point Numbers 17

University of Washingto

Floating Point Multiplication

$$(-1)^{s1}$$
 M1 2^{E1} * $(-1)^{s2}$ M2 2^{E2}

- Exact Result: (-1)^s M 2^E
 - Sign s: s1 ^ s2 // xor of s1 and s2
 - Significand M: M1 * M2Exponent E: E1 + E2

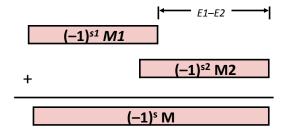
Fixing

- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Floating Point Addition

 $(-1)^{s1}$ M1 2^{E1} + $(-1)^{s2}$ M2 2^{E2} Assume E1 > E2

- Exact Result: (-1)^s M 2^E
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1



Fixing

- If M ≥ 2, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit frac precision

04 April 2012 Floating Point Numbers 19

University of Washington

Hmm... if we round at every operation...

Mathematical Properties of FP Operations

- Not really associative or distributive due to rounding
- Infinities and NaNs cause issues
- Overflow and infinity

04 April 2012 Floating Point Numbers 21

University of Washington

Floating Point in C

C Guarantees Two Levels

float single precision
double double precision

Conversions/Casting

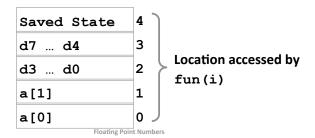
- Casting between int, float, and double changes bit representation
- Double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: generally sets to TMin
- int → double
 - Exact conversion, as long as int has ≤ 53-bit word size
- int → float
 - Will round according to rounding mode

Memory Referencing Bug

```
double fun(int i)
{
  volatile double d[1] = {3.14};
  volatile long int a[2];
  a[i] = 1073741824; /* Possibly out of bounds */
  return d[0];
}
```

```
fun(0) -> 3.14
fun(1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14, then segmentation fault
```

Explanation:



04 April 2012

University of Washingto

23

Representing 3.14 as a Double FP Number

- **3.14 = 11.0010 0011 1101 0111 0000 1010 000...**
- \blacksquare (-1)^s M 2^E
 - \blacksquare S = 0 encoded as 0
 - M = 1.1001 0001 1110 1011 1000 0101 000.... (leading 1 left out)
 - E = 1 encoded as 1024 (with bias)

```
s exp (11) frac (first 20 bits)
0 100 0000 0000 1001 0001 1110 1011 1000
```

```
frac (the other 32 bits)
```

0101 0000 ...

Memory Referencing Bug (Revisited)

```
double fun(int i)
         volatile double d[1] = {3.14};
         volatile long int a[2];
         a[i] = 1073741824; /* Possibly out of bounds */
         return d[0];
       fun(0) ->
       fun(1) ->
                        3.14
       fun(2) ->
                        3.1399998664856
       fun(3) ->
                        2.00000061035156
       fun(4) ->
                        3.14, then segmentation fault
       Saved State
                                                               4
            d7 ... d4 0100 0000 0000 1001 0001 1110 1011 1000
                                                               3
                                                                     Location
            d3 ... d0 | 0101 0000 ...
                                                               2
                                                                     accessed
                a[1]
                                                               1
                                                                     by fun(i)
                                                               O
                a[0]
CSE351 - Inaugural Edition - Spring 2010
```

University of Washington

Memory Referencing Bug (Revisited)

```
double fun(int i)
 volatile double d[1] = {3.14};
 volatile long int a[2];
 a[i] = 1073741824; /* Possibly out of bounds */
 return d[0];
fun(0) ->
             3.14
fun(1) ->
             3.14
fun(2) ->
             3.1399998664856
fun(3) ->
             2.00000061035156
fun(4) ->
             3.14, then segmentation fault
Saved State
                                              4
    d7 ... d4 0100 0000 0000 1001 0001 1110 1011 1000
                                              3
                                                  Location
                                              2
    accessed
       a[1]
                                              1
                                                  by fun(i)
```

CSE351 - Inaugural Edition - Spring 2010

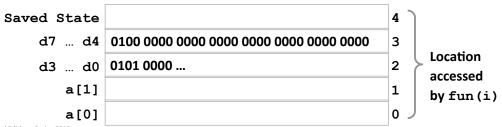
a[0]

0

Memory Referencing Bug (Revisited)

```
double fun(int i)
{
  volatile double d[1] = {3.14};
  volatile long int a[2];
  a[i] = 1073741824; /* Possibly out of bounds */
  return d[0];
}
```

```
fun(0) -> 3.14
fun(1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14, then segmentation fault
```



CSE351 - Inaugural Edition - Spring 2010

University of Washingtor

27

Floating Point and the Programmer

```
#include <stdio.h>
int main(int argc, char* argv[]) {
  float f1 = 1.0;
  float f2 = 0.0;
  int i;
  for ( i=0; i<10; i++ ) {
   f2 += 1.0/10.0;
                                                         $ ./a.out
 printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
                                                         0x3f800000 0x3f800001
 printf("f1 = %10.8f\n", f1);
                                                         f1 = 1.000000000
 printf("f2 = %10.8f\n\n", f2);
                                                         f2 = 1.000000119
 f1 = 1E30;
                                                         f1 == f3? yes
 f2 = 1E-30;
 float f3 = f1 + f2;
 printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );
 return 0;
}
```

Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some "simple fractions" have no exact representation
 - E.g., 0.1
 - Can also lose precision, unlike ints
 - "Every operation gets a slightly wrong result"
- Mathematically equivalent ways of writing an expression may compute different results
 - Violates associativity/distributivity
- NEVER test floating point values for equality!

04 April 2012 Floating Point Numbers 2

University of Washingtor

Additional details

- Denormalized values to get finer precision near zero
- Tiny floating point example
- Distribution of representable values
- Rounding

Denormalized Values

- **■** Condition: **exp** = 000...0
- **Exponent value:** $E = \exp{-Bias} + 1$ (instead of $E = \exp{-Bias}$)
- Significand coded with implied leading 0: M = 0. xxx...x₂
 - *xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents value 0
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, $frac \neq 000...0$
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced

CSE351 - Inaugural Edition - Spring 2010

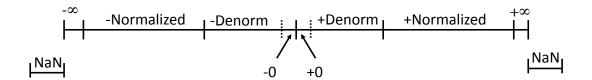
31

University of Washingto

Special Values

- **■** Condition: **exp** = **111...1**
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -1.0/0.0 = -\infty$
- Case: exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty * 0$

Visualization: Floating Point Encodings



CSE351 - Inaugural Edition - Spring 2010

33

University of Washington

Tiny Floating Point Example

■ 8-bit Floating Point Representation

- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac

■ Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

CSE351 - Inaugural Edition - Spring 2010

Dynamic Range (Positive Only)

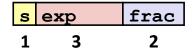
	s exp frac	E Value	
Denormalized numbers	0 0000 000 0 0000 001 0 0000 010 0 0000 110		closest to zero
	0 0000 110	-6 7/8*1/64 = 7/512	
	0 0001 000 0 0001 001		smallest norm
Normalized	0 0110 110 0 0110 111 0 0111 000	-1 14/8*1/2 = 14/16 -1 15/8*1/2 = 15/16 0 8/8*1 = 1	closest to 1 below
numbers	0 0111 001 0 0111 010 	0 9/8*1 = 9/8 0 10/8*1 = 10/8	closest to 1 above
	0 1110 110 0 1110 111 0 1111 000	7 14/8*128 = 224 7 15/8*128 = 240 n/a inf	largest norm
	0 1111 000	II/ a IIII	

CSE351 - Inaugural Edition - Spring 2010

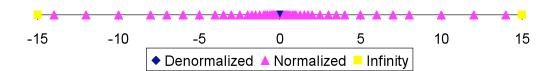
University of Washington

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1=3$



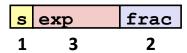
Notice how the distribution gets denser toward zero.



Distribution of Values (close-up view)

■ 6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3



<u> </u>	* * * * * * * * * * * * * * * * * * * 	· · · · · · · · ·	***	A
-1	-0.5	0	0.5	1
	◆ Denormali	zed 🔺 Normalize	d Infinity	

CSE351 - Inaugural Edition - Spring 2010

37

University of Washingtor

Interesting Numbers

{single,double}

Description	ехр	frac	Numeric Value
■ Zero	0000	0000	0.0
 Smallest Pos. Denorm. Single ≈ 1.4 * 10⁻⁴⁵ Double ≈ 4.9 * 10⁻³²⁴ 	0000	0001	2-{23,52} * 2-{126,1022}
 Largest Denormalized Single ≈ 1.18 * 10⁻³⁸ Double ≈ 2.2 * 10⁻³⁰⁸ 	0000	1111	$(1.0 - \varepsilon) * 2^{-\{126,1022\}}$
Smallest Pos. Norm.Just larger than largest de	0001 enormalize		1.0 * 2- {126,1022}
One	0111	0000	1.0
 Largest Normalized Single ≈ 3.4 * 10³⁸ 	1110	1111	$(2.0 - \varepsilon) * 2^{\{127,1023\}}$

CSE351 - Inaugural Edition - Spring 2010

■ Double $\approx 1.8 * 10^{308}$

38

Special Properties of Encoding

- Floating point zero (0⁺) exactly the same bits as integer zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^- = 0^+ = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

CSE351 - Inaugural Edition - Spring 2010

39

University of Washingto

Rounding

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
Round down (-∞)	\$1	\$1	\$1	\$2	- \$2
Round up (+∞)	\$2	\$2	\$2	\$3	- \$1
Nearest (default)	\$1	\$2	\$2	\$2	- \$2

What are the advantages of the modes?

Closer Look at Round-To-Nearest

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

1.2349999	1.23	(Less than half way)
1.2350001	1.24	(Greater than half way)
1.2350000	1.24	(Half way—round up)
1.2450000	1.24	(Half way—round down)

CSE351 - Inaugural Edition - Spring 2010

41

University of Washingto

Rounding Binary Numbers

Binary Fractional Numbers

"Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

CSE351 - Inaugural Edition - Spring 2010