University of Washington

The Hardware/Software Interface

CSE351 Spring 2012
1%t Lecture, March 26

Instructor:
Gaetano Borriello

Teaching Assistants:
Thomas Bergan, Sunjay Cauligi, Chantal Murthy, Chee Wei Tang

26 March 2012 Introduction 1

University of Washington

Who is Gaetano?

At UW since 88
PhD at UC Berkeley
MS at Stanford
BS at NYU Poly

Research trajectory:
Integrated circuits 2
Computer-aided design =
Reconfigurable hardware 2
Embedded systems 2>
Networked sensors 9
Ubiquitous computing =&
Mobile devices 2
Applications in developing world

26 March 2012 Introduction 2

University of Washington

Who are you?

m 80+ students (we will do our best to get to know each of you!)

m What is hardware? Software?
m What is an interface?
m Why do we need a hardware/software interface?

m Who has written a program in assembly language before?
m Written a multi-threaded program before?

University of Washington

C/Java, assembly, and machine code

|if (x !'=0) v = (y+z)/x; |

cmpl $0, -4(%ebp) 1000001101111100001001000001110000000000
je L2 0111010000011000
movl -12(%ebp), %eax 10001011010001000010010000010100
movl -8(%ebp), %edx 10001011010001100010010100010100
leal (%edx, %eax), Y%oeax 100011010000010000000010
movl %eax, %edx 1000100111000010
sarl $31, %edx 110000011111101000011111
idivl -4(%ebp) 11110111011111000010010000011100
movl %eax, -8(%ebp) 10001001010001000010010000011000
.L2:

University of Washington

C/Java, assembly, and machine code

|if (x !'=0) y = (y+2)/x%; |

v

cmpl $0, -4(%ebp) 1000001101111100001001000001110000000000
je L2 0111010000011000
movl -12(%ebp), %eax 10001011010001000010010000010100
movl -8(%ebp), %edx 9 10001011010001100010010100010100
leal (%edx, %eax), Yoeax 100011010000010000000010
movl %eax, %edx 1000100111000010
sarl $31, %edx 6 110000011111101000011111
idivl -4(%ebp) 11110111011111000010010000011100
movl %eax, -8(%ebp) 10001001010001000010010000011000
L2:

o The three program fragments are equivalent
o You'd rather write C! - a more human-friendly language
« The hardware likes bit strings! - everything is voltages

« The machine instructions are actually much shorter than if we just
used the bits of the characters of the assembly language

University of Washington

HW/SW Interface: The Historical Perspective

m Hardware started out quite primitive

® Hardware designs were expensive = instructions had to be very simple
—e.g., a single instruction for adding two integers

m Software was also very primitive
= Software primitives reflected the hardware pretty closely

/ Architecture Specification (Interface)

©
\

Hardware

University of Washington

HW/SW Interface: Assemblers

m Life was made a lot better by assemblers
= 1 assembly instruction = 1 machine instruction, but...

= different syntax: assembly instructions are character strings, not bit
strings, a lot easier to read/write by humans

Assembler specification

g User

program
in

\ asm

Assembler Hardware

University of Washington

HW/SW Interface: Higher-Level Languages

m Higher level of abstraction:

® 1 HLL line is compiled into many (many) assembler lines

C language specification

User
program M Hardware
\ inC compller

University of Washington

HW/SW Interface: Code / Compile / Run Times

Code Time Compile Time Run Time

User

program [§ T
\ inC

Hardware

compiler

.c file .exe file

Note: The compiler and assembler are just programs, developed using
this same process.

26 March 2012 Introduction 9

University of Washington

Overview

Course themes: big and little

Four important realities

How the course fits into the CSE curriculum
Logistics

26 March 2012 Introduction 10

University of Washington

The Big Theme

m THE HARDWARE/SOFTWARE INTERFACE

m How does the hardware (0s and 1s, processor executing
instructions) relate to the software (Java programs)?

m Computing is about abstractions (but we can’t forget reality)
m What are the abstractions that we use?

m What do YOU need to know about them?
® When do they break down and you have to peek under the hood?
= What bugs can they cause and how do you find them?
m Become a better programmer and begin to understand the

important concepts that have evolved in building ever more
complex computer systems

University of Washington

Little Theme 1: Representation

m All digital systems represent everything as 0s and 1s
" The 0 and 1 are really two different voltage ranges in the electronics
m Everything includes:
®= Numbers —integers and floating point
® Characters — the building blocks of strings
® |nstructions —the directives to the CPU that make up a program
= Pointers — addresses of data objects stored away in memory
m These encodings are stored throughout a computer system
® |n registers, caches, memories, disks, etc.

m They all need addresses
= A way to find them
®= Find a new place to put a new item
® Reclaim the place in memory when data no longer needed

University of Washington

Little Theme 2: Translation

m There is a big gap between how we think about programs and
data and the Os and 1s of computers

m Need languages to describe what we mean

m Languages need to be translated one step at a time
= Word-by-word
® Phrase structures
® Grammar

m We know Java as a programming language
® Have to work our way down to the Os and 1s of computers
®= Try not to lose anything in translation!

= WEe’'ll encounter Java byte-codes, C language, assembly language, and
machine code (for the X86 family of CPU architectures)

University of Washington

Little Theme 3: Control Flow

m How do computers orchestrate the many things they are
doing — seemingly in parallel

m What do we have to keep track of when we call a method,
and then another, and then another, and so on

= How do we know what to do upon “return”

m User programs and operating systems
= Multiple user programs
® Qperating system has to orchestrate them all
= Each gets a share of computing cycles
= They may need to share system resources (memory, 1/0, disks)
= Yielding and taking control of the processor
= Voluntary or “by force”?

University of Washington

Course Outcomes

m Foundation: basics of high-level programming (Java)

m Understanding of some of the abstractions that exist
between programs and the hardware they run on, why they
exist, and how they build upon each other

m Knowledge of some of the details of underlying
implementations

m Become more effective programmers

= More efficient at finding and eliminating bugs

® Understand some of the many factors that influence program
performance

® Facility with a couple more of the many languages that we use to
describe programs and data

m Prepare for later classes in CSE

University of Washington

Reality 1: Ints # Integers & Floats z Reals

m Representations are finite
m Example 1:Isx220?
® Floats: Yes!
" |nts:
= 40000 * 40000 --> 1600000000
= 50000 * 50000 -->??
m Example2:Is(x+y)+z = x+(y+2)?
® Unsigned & Signed Ints: Yes!
® Floats:
= (1e20+-1e20) +3.14-->3.14
» 1e20 +(-1e20 + 3.14) --> ??

University of Washington

Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE]; int len = KSIZE;

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from kernel (void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

if (KSIZE > maxlen) len = maxlen;

memcpy (user_dest, kbuf, len);

return len;

m Similar to code found in FreeBSD’s implementation of
getpeername

m There are legions of smart people trying to find vulnerabilities
in programs

University of Washington

Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE]; int len = KSIZE;

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel (void *user_ dest, int maxlen) ({

/* Byte count len is minimum of buffer size and maxlen */

if (KSIZE > maxlen) len = maxlen;

memcpy (user_dest, kbuf, len);

return len;

#define MSIZE 528

void getstuff () {
char mybuf [MSIZE] ;
copy from kernel (mybuf, MSIZE);
printf (“%s\n”, mybuf) ;

University of Washington

Malicious Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE]; int len = KSIZE;

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel (void *user_ dest, int maxlen) ({

/* Byte count len is minimum of buffer size and maxlen */

if (KSIZE > maxlen) len = maxlen;

memcpy (user_dest, kbuf, len);

return len;

#define MSIZE 528

void getstuff () {
char mybuf [MSIZE] ;
copy_from kernel (mybuf, -MSIZE) ;

University of Washington

Reality #2: You’ve Got to Know Assembly

= Why? Because we want you to suffer?©

University of Washington

Reality #2: You’ve Got to Know Assembly

m Chances are, you'll never write a program in assembly code
® Compilers are much better and more patient than you are
m But: Understanding assembly is the key to the machine-level
execution model
= Behavior of programs in presence of bugs
= High-level language model breaks down
®= Tuning program performance
= Understand optimizations done/not done by the compiler
= Understanding sources of program inefficiency
" |Implementing system software
= Operating systems must manage process state
= Creating / fighting malware
= x86 assembly is the language of choice
= Use special thingees (timers, 1/0 co-processors, etc.) inside processor!

University of Washington

Assembly Code Example

m Time Stamp Counter
® Special 64-bit register in Intel-compatible machines
® |Incremented every clock cycle
= Read with rdtsc instruction

m Application

= Measure time (in clock cycles) required by procedure

double t;

start counter();

P();

t = get_counter();

printf ("P required %f clock cycles\n”, t);

University of Washington

Code to Read Counter

m Write small amount of assembly code using GCC’s asm facility

m Inserts assembly code into machine code generated by
compiler

/* Set *hi and *lo (two 32-bit values) to the
high and low order bits of the cycle counter.

*/

void access_counter (unsigned *hi, unsigned *1lo)
{
asm('"rdtsc,; movl $%%edx, %0, movl %$%eax, $1"
"=r" (*hi), "=r" (*lo) /* output */
/* input */
"3edx", "%eax"):; /* clobbered */

26 March 2012 Introduction 23

University of Washington

Reality #3: Memory Matters

m Ehm, what is memory?

26 March 2012 Introduction 24

University of Washington

Reality #3: Memory Matters

m Memory is not unbounded
® |t must be allocated and managed
® Many applications are memory-dominated

m Memory referencing bugs are especially pernicious
= Effects are distant in both time and space

m Memory performance is not uniform

® Cache and virtual memory effects can greatly affect program
performance

= Adapting program to characteristics of memory system can lead to
major speed improvements

University of Washington

Memory Referencing Bug Example

double fun(int i)
{
volatile double d[1l] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

fun(0) -—> 3.14

fun(l) -> 3.14

fun(2) > 3.1399998664856

fun(3) -> 2.00000061035156

fun(4) > 3.14, then segmentation fault

University of Washington

Memory Referencing Bug Example

double fun(int i)
{
volatile double d[1l] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];
}

fun (0) -> 3.14
fun(l) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun (4) -> 3.14, then segmentation fault
Explanation: saved state 4)
d7 .. d4 3
Location accessed b
d3 .. do 2 _ v
fun (i)
a[l] 1
a[o0] 0 J

University of Washington

Memory Referencing Errors

m C(and C++) do not provide any memory protection
® Qut of bounds array references
® |nvalid pointer values
= Abuses of malloc/free

m Can lead to nasty bugs
= Whether or not bug has any effect depends on system and compiler
= Action at a distance
= Corrupted object logically unrelated to one being accessed
= Effect of bug may be first observed long after it is generated

m How can | deal with this?

® Program in Java (or C#, or ML, or ...)
® Understand what possible interactions may occur
= Use or develop tools to detect referencing errors

University of Washington

Memory System Performance Example

m Hierarchical memory organization

m Performance depends on access patterns
® |ncluding how program steps through multi-dimensional array

void copyij(int src[2048][2048], void copyji(int src[2048][2048],
int dst[2048][2048]) int dst[2048][2048])
{ {
int i,3; int i,3;
for (i = 0; i < 2048; i++) \><—V for (j = 0; j < 2048; j++)
for (j = 0; j < 2048; j++) =] ™ for (i = 0; i < 2048; i++)
dst[i] [§] = sre[il[j]; dst[i][§] = sre[il[j];

} }

21 times slower
(Pentium 4)

26 March 2012 Introduction 29

University of Washington

Reality #4: Performance isn’t counting ops

m Can you tell how fast a program is just by looking at the
code?

26 March 2012 Introduction 30

University of Washington

Reality #4: Performance isn’t counting ops

m Exact op count does not predict performance
® Easily see 10:1 performance range depending on how code is written
= Must optimize at multiple levels: algorithm, data representations,
procedures, and loops
m Must understand system to optimize performance
®= How programs are compiled and executed
®= How memory system is organized
"= How to measure program performance and identify bottlenecks

®" How to improve performance without destroying code modularity and
generality

26 March 2012 Introduction 31

University of Washington

Example Matrix Multiplication

m Standard desktop computer, vendor compiler, using optimization flags
m Both implementations have exactly the same operations count (2n3)

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)

Gflop/s
50
45
40 —
% Best code (K. Goto)
30
25
20 Triple loop
15
10
5
oW | 7 T T T T T T :
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

26 March 2012 Introduction 32

University of Washington

MMM Plot: Analysis

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

Gflop/s
50
45
=
40 =S
35 -
Multiple threads: 4x
30
25
20
15
10 .
5 i Memory hierarchy and other optimizations: 20x
0 5 1 , - - - - - - ,
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size
m Reason for 20x: blocking or tiling, loop unrolling, array scalarization,
instruction scheduling, search to find best choice
m Effect: less register spills, less L1/L2 cache misses, less TLB misses

26 March 2012 Introduction 33

University of Washington

CSE351’s role in new CSE Curriculum

m Pre-requisites
® 142 and 143: Intro Programming | and Il

m One of 6 core courses
= 311: Foundations |
= 312: Foundations Il
= 331: SW Design and Implementation
= 332: Data Abstractions
= 351: HW/SW Interface
= 352: HW Design and Implementation

m 351 sets the context for many follow-on courses

26 March 2012 Introduction 34

University of Washington

CSE351’s place in new CSE Curriculum

CSE477/481/490/etc.
Capstone and Project Courses

CSE352 CSE333 CSE451 CSE401 CSE461 CSE484 CSE466
HW Design Systems Prog| [Op Systems || Compilers Networks Security Emb Systems

N \ yJ] P
Performance ¢, rency Distributed E):;ct;th
ode
Machine SYstems _
Comp. Arch. Code Real-Time
\ | / Control
CSE351 | The HW/SW Interface

underlying principles linking
hardware and software

CS 143
Intro Prog Il

26 March 2012 Introduction 35

University of Washington

Course Perspective

m Most systems courses are Builder-Centric
= Computer Architecture
= Design pipelined processor in Verilog
® QOperating Systems
* Implement large portions of operating system
= Compilers
= Write compiler for simple language
= Networking
* Implement and simulate network protocols

26 March 2012 Introduction 36

University of Washington

Course Perspective (cont’d)

m This course is Programmer-Centric
® Purpose is to show how software really works

® By understanding the underlying system,
one can be more effective as a programmer

= Better debugging

= Better basis for evaluating performance

= How multiple activities work in concert (e.g., OS and user programs)
® Not just a course for dedicated hackers

* What every CSE major needs to know
® Provide a context in which to place the other CSE courses you’ll take

26 March 2012 Introduction 37

University of Washington

Textbooks

m Computer Systems: A Programmer’s Perspective, 2" Edition
= Randal E. Bryant and David R. O’Hallaron p—
COMPUTER SYSTEM
® Prentice-Hall, 2010 e

" http://csapp.cs.cmu.edu
®= This book really matters for the course!

» How to solve labs

= Practice problems typical of exam problems Bryant - O'Hallaron

m A good C book — any will do
= C: A Reference Manual (Harbison and Steele)
®= The C Programming Language (Kernighan and Ritchie)

26 March 2012 Introduction 38

University of Washington

Course Components

m Lectures (28)
= Higher-level concepts — I'll assume you’ve done the reading in the text
m Sections (10)

= Applied concepts, important tools and skills for labs, clarification of
lectures, exam review and preparation

m Written assignments (4)

= Mostly problems from text to solidify understanding
m Labs (5)

® Provide in-depth understanding (via practice) of an aspect of systems
m Exams (midterm + final)

® Test your understanding of concepts and principles

University of Washington

Resources

m Course Web Page

= http://www.cse.washington.edu/351

= Copies of lectures, assignments, exams
m Course Discussion Board

= Keep in touch outside of class — help each other

= Staff will monitor and contribute
m Course Mailing List

= Low traffic — mostly announcements; you are already subscribed
m Staff E-mail

®= Things that are not appropriate for discussion board or better offline
m Anonymous Feedback

= Any comments about anything related to the course where you would
feel better not attaching your name

University of Washington

Policies: Grading

m Exams (40%): weighted 15/40 (midterm) and 25/40 (final)

m Written assignments (20%): weighted according to effort
= We'll try to make these about the same

m Labs assignments (40%): weighted according to effort

= These will likely increase in weight as the quarter progresses

University of Washington

Welcome to CSE351!

Let’s have fun
Let’s learn — together
Let’s communicate

Let’s make this a useful class for all of us

m Many thanks to the many instructors who have shared their
lecture notes — | will be borrowing liberally through the qtr -
they deserve all the credit, the errors are all mine

®= CMU: Randy Bryant, David O’Halloran, Gregory Kesden, Markus Plschel
® Harvard: Matt Welsh (now at Google-Seattle)

UW: Luis Ceze, Hal Perkins, John Zahorjan

| also taught the Inaugural edition of CSE 351 in Spring 2010

