
CSE 351: Section 10
Memory Allocation

Memory Allocation

● Must allocate any memory you need to use
● Allocating memory = designating a block of it

as 'used'
○ This way, you don't overwrite your data
○ The memory isn't changed, but compiler knows that

memory is allocated
● There are three general types of memory

allocation
○ Static
○ Automatic
○ Dynamic

Static Memory Allocation

● Unlike the other two methods, static memory
allocation occurs at compile-time

● Memory allocated statically exists for the
duration of the program

Example:

int global_int_outside_main;
int main (int argc, char *argv[]){...}

Automatic Memory Allocation

● Occurs at run-time
● Automatically-allocated variables only last

for the duration of the function call
● Automatically-allocated variables are stored

on the stack

Example:
int myFunction(int a, int b){
 int local_var_on_the_stack = 5;
 ...
}

Dynamic Memory Allocation

● Also occurs at run-time
● However, the programmer has control over

the lifespan of dynamically-allocated
variables

● The x86 implementation of dynamic memory
allocation is heap-based
○ Means that variables declared dynamically are

stored on the heap
● In C/C++, the programmer is responsible for

○ Allocating space for dynamic variables [malloc()]
○ Freeing up that space when the variable is no longer

needed [free()]

Advantages of Dynamic Allocation

● Say you want to create a linked list in C
● Example requirements:

○ You want this list to exist for roughly the duration of
the program and be accessible to many different
functions

○ You want to be able to add/remove elements from
the list on the fly without worrying about exceeding a
length bound

● Dynamic allocation is the only way to make
this possible

Linked List C Implementation

● How will this work in C?
● Each node could look like this:

struct node {
int data;
struct node *next;

};

● Now...where do we put these structs?

Note: this is not the free list

Dynamic Allocation in C

● The C Standard Library provides several
functions that allocate memory dynamically

● We will use the malloc() function to
allocate space in the heap, and the free()
function to free up the space when we no
longer need it

● We will also use the sizeof() function to
determine how many bytes are required for
certain types

malloc()

● Parameter
○ The number of bytes to be allocated

● Returns:
○ Pointer to allocated block of memory or NULL if it fails

● Example: int *int_ptr = (int *)malloc(4);
○ Hard-coding a size is generally bad style, because the

int datatype can vary across systems
○ sizeof() returns the size of a particular datatype (in

bytes), so we can pass it as an argument to malloc():
int *int_ptr = (int *)malloc(sizeof(int));

○ It's good practice to cast the pointer from malloc()

free()

● Parameter:
○ A pointer to a block of memory to be freed

● Returns:
○ Nothing!

● Example:
int *t = (int *)malloc(sizeof(int));
free(t);

● The code snippet above would simply
allocate a block of 4 bytes on the heap, then
free it for the program to use later

Putting it together
struct node *list = NULL; // head of list, starts empty

void insert_front(struct node *head, int n) {
struct node *new_node =

(struct node *)malloc(sizeof(struct node));
if(new_node == NULL){ printf("Error!"); return;}
new_node->data = n;
if (head == NULL)

head = new_node;
else {

new_node->next = head;
head = new_node;

}
}

Dynamic Allocation Guidelines

● Always check for NULL from malloc()
● Always initialize what you get from malloc()
● Always free() what you malloc()
● After calling free(), set pointers to NULL
● Use casting to say how to view the memory

Ex: (int *) malloc(N * sizeof(int));
● Never use more than you allocate
● Never free() something you didn't malloc
● Never free() twice

How malloc() works

● In the heap, it keeps a linked list of free
blocks called a "free list"

● When a block needs to be allocated, it
searches the free list for a block of the right
size, breaks off a chunk of the necessary
size, and adds the remainder back into the
free list

● Thus, if you use more memory than you
allocated, you will corrupt the linked list

● This is a basic description of the behavior
you will need to implement in Lab 5!

GDB Linked List Demo

Source file:
http://www.cs.washington.edu/education/courses/cse351/12au/section-slides/tiny_linked_list.c

GDB command list:
http://www.cs.washington.edu/education/courses/cse351/12au/section-slides/gdb_linked_list.txt

http://www.cs.washington.edu/education/courses/cse351/12au/section-slides/tiny_linked_list.c
http://www.cs.washington.edu/education/courses/cse351/12au/section-slides/tiny_linked_list.c
http://www.cs.washington.edu/education/courses/cse351/12au/section-slides/gdb_linked_list.txt
http://www.cs.washington.edu/education/courses/cse351/12au/section-slides/gdb_linked_list.txt

Lab 5

● You will be responsible for implementing two
functions
○ mm_malloc(), which allocates memory in the heap
○ mm_free(), which frees memory in the heap

● There is plenty of starter code, you just need
to manipulate the free list correctly (which is
easier said than done, so start early!)

● For exhaustive free list diagrams, see these
slides put together last spring: http://www.cs.
washington.
edu/education/courses/cse351/12sp/section-
slides/section-9.pdf

http://www.cs.washington.edu/education/courses/cse351/12sp/section-slides/section-9.pdf
http://www.cs.washington.edu/education/courses/cse351/12sp/section-slides/section-9.pdf
http://www.cs.washington.edu/education/courses/cse351/12sp/section-slides/section-9.pdf
http://www.cs.washington.edu/education/courses/cse351/12sp/section-slides/section-9.pdf
http://www.cs.washington.edu/education/courses/cse351/12sp/section-slides/section-9.pdf

