CSE 351: Section 10

Memory Allocation



Memory Allocation

e Must allocate any memory you need to use
e Allocating memory = designating a block of it

as 'used’

o This way, you don't overwrite your data

o The memory isn't changed, but compiler knows that
memory is allocated

e There are three general types of memory

allocation
o Static

o Automatic
o Dynamic



Static Memory Allocation

e Unlike the other two methods, static memory
allocation occurs at compile-time

e Memory allocated statically exists for the
duration of the program

Example:

int global int outside main;
int main (int argc, char *argvl[]){...}



Automatic Memory Allocation

e Occurs at run-time

e Automatically-allocated variables only last
for the duration of the function call

e Automatically-allocated variables are stored

on the stack

Example:
int myFunction(int a, int b) {
int local var on the stack = 5;



Dynamic Memory Allocation

e Also occurs at run-time

e However, the programmer has control over
the lifespan of dynamically-allocated
variables

e The x86 implementation of dynamic memory

allocation is heap-based
o Means that variables declared dynamically are
stored on the heap

e |[n C/C++, the programmer is responsible for
o Allocating space for dynamic variables [malloc()]

o Freeing up that space when the variable is no longer
needed [free()]



Advantages of Dynamic Allocation

e Say you want to create a linked list in C

e Example requirements:

o You want this list to exist for roughly the duration of
the program and be accessible to many different
functions

o You want to be able to add/remove elements from
the list on the fly without worrying about exceeding a
length bound

e Dynamic allocation is the only way to make
this possible



Linked List C Implementation

e How will this work in C?

e Each node could look like this:

struct node {
int data;
struct node *next;

b i
e Now...where do we put these structs?

Note: this is not the free list



Dynamic Allocation in C

The C Standard Library provides several
functions that allocate memory dynamically
We will use the malloc () function to
allocate space in the heap, and the free ()
function to free up the space when we no
longer need it

We will also use the sizeof () function to
determine how many bytes are required for
certain types



malloc ()

e Parameter
o The number of bytes to be allocated

e Returns:
o Pointer to allocated block of memory or NULL if it fails

o Example int *int ptr = (int *)malloc(4);
o Hard-coding a size is generally bad style, because the
int datatype can vary across systems
o sizeof () returns the size of a particular datatype (in
bytes), so we can pass it as an argument to malloc () :
int *int ptr = (int *)malloc(sizeof (int));

o It's good practice to cast the pointer frommalloc ()



free ()

e Parameter:
o A pointer to a block of memory to be freed

e Returns:
o Nothing!

e Example:
int *t = (1int *)malloc(sizeof (int));
free(t);

e The code snippet above would simply
allocate a block of 4 bytes on the heap, then
free it for the program to use later



Putting it together

struct node *list = NULL; // head of list, starts empty

vold insert front (struct node *head, 1int n) {

struct node *new node =

(struct node *)malloc(sizeof (struct node));
if (new node == NULL) { printf ("Error!"); return;}
new node->data = n;
if (head == NULL)

head = new node;
else {

new node->next = head;

head = new node;



Dynamic Allocation Guidelines

Always check for NULL from malloc()
Always Iinitialize what you get from malloc()
Always free() what you malloc()

After calling free(), set pointers to NULL
Use casting to say how to view the memory
EX: (int *) malloc (N * sizeof (int));
Never use more than you allocate

Never free() something you didn't malloc

e Never free() twice




How malloc () works

e In the heap, it keeps a linked list of free
blocks called a "free list"
When a block needs to be allocated, it
searches the free list for a block of the right
size, breaks off a chunk of the necessary
size, and adds the remainder back into the
free list
nNus, if you use more memory than you

T

d
T

located, you will corrupt the

NiS IS a basic description of t

you will need to implement in

Inked list
ne behavior

_ab 5!



GDB Linked List Demo

Source file:

http://www.cs.washington.edu/education/courses/cse351/12au/section-slides/tiny linked list.c

GDB command list:

http://www.cs.washington.edu/education/courses/cse351/12au/section-slides/gdb linked list.txt



http://www.cs.washington.edu/education/courses/cse351/12au/section-slides/tiny_linked_list.c
http://www.cs.washington.edu/education/courses/cse351/12au/section-slides/tiny_linked_list.c
http://www.cs.washington.edu/education/courses/cse351/12au/section-slides/gdb_linked_list.txt
http://www.cs.washington.edu/education/courses/cse351/12au/section-slides/gdb_linked_list.txt

Lab 5

e You will be responsible for implementing two

functions
o mm malloc (), which allocates memory in the heap
o mm free (), which frees memory in the heap

e There is plenty of starter code, you just need
to manipulate the free list correctly (which is
easier said than done, so start early!)

e For exhaustive free list diagrams, see these

slides put together last spring: http://www.cs.
washington.
edu/education/courses/cse351/12sp/section-
slides/section-9.pdf



http://www.cs.washington.edu/education/courses/cse351/12sp/section-slides/section-9.pdf
http://www.cs.washington.edu/education/courses/cse351/12sp/section-slides/section-9.pdf
http://www.cs.washington.edu/education/courses/cse351/12sp/section-slides/section-9.pdf
http://www.cs.washington.edu/education/courses/cse351/12sp/section-slides/section-9.pdf
http://www.cs.washington.edu/education/courses/cse351/12sp/section-slides/section-9.pdf

