CSE 351 Section 8

Fork and Execve

Lab #4

e Any questions on Lab 4?

e This is a dummy cache - it's not affected by
your in-memory arrays; those arrays go to
your *real* cache

e Other questions in office hours

fork() basic functionality

Copies the entire current process and runs it
concurrently as a separate process

Returns twice:
o To the new child process: 0
o To the parent process: the child's process ID (pid)

Use return value to distinguish which
process is currently being executed

fork() semantics

What needs to be copied when fork() is
called?

Goal is for child to run identically

All memory owned by the parent process

must be copied to the child process
o The address space is usually not copied all at once

o Copy-on-write: OS copies a page of memory only
when the child writes to the page

Other things are copied, too, but copying
memory is the most expensive operation

wait()

e Parent process waits for the child process to
return (exit) before continuing
e Returns the process id (pid) of the child

e [akes an optional parameter
o Type (int *), pointer to an int
o Receives the exit status of the child process

waitpid()

e Just like wait(), but takes a pid as a

parameter, so it is only waiting for a specific
process to return

e Useful when you have many child processes
and want finer control

Wait/Fork example

#include <stdio.h> /* printf, stderr, fprintf */
#include <sys/types.h: /* pid t */

#include <unistd.h> /* _exit, fork */

#include <stdlib.h:> /* exit */

#include <errno.h> /* errno */

int main (void)

{

pid t pid;
pid = fork();
if (pid == -1)

{
/* Fork didn't work */

exit (-1);

if (pid == 0)

/* Child Process: do stuff here */
_exit(return status);
}

else

{
/* Parent Process: wait and then exit
int return status;
waitpid(pid, &return status,NULL) ;
/* Do stuff once child has exited */

exit (0) ;
}

return 0;

code

execve()

Member of the exec() family of functions
Executes a program in the current process
Doesn't return unless there is an error

Parameters:

o Path to the executable

o Array of arguments

o Environment variables (tip on next slide)

Subtle exec() tip

e For commands without path ('Is' vs '/bin/Is')

e Some exec() calls try to load environment
variables to resolve the path

e Add this declaration before main():

O extern char **environ

e Now pass NULL as an environment variable

argument to the exec() call
Ex: execve ("/bin/pwd", NULL, NULL);

Fork-Exec model

e Exec is powerful, but it is limited because it

never returns
e \What if you want to call another executable

within your program?

o Fork a child process

o Use exec() in the child process

o Make the parent wait for the child to exit
o Continue working in the parent process

Fork-Exec example code

#include <stdio.h: /* printf, stderr, fprintf */
#include <sys/types.h: /* pid t */

#include <unistd.h: /* _exit, fork */

#include <stdlib.h> /* exit */

#include <errno.h> /* errno */

extern char **environ;

int main (void)

{

pid t pid;
pid = fork();
if (pid == -1)

{
/* Fork didn't work */

exit (-1);

if (pid == 0)

/* Child process, call exec */

execve ("/bin/1ls",NULL,NULL) ;
}

else

{
/* Parent Process: wait and then exit
int return status;
waitpid(pid, &return status, NULL) ;
/* Do stuff once child has exited */

exit (0) ;
}

return 0;

Sample programs
e Will be available on the class calendar later

e One is a simple fork/wait example
e One shows how the fork-exec model works

Do demos for the rest of class

