
CSE 351 Section 8
Fork and Execve

Lab #4

● Any questions on Lab 4?
● This is a dummy cache - it's not affected by

your in-memory arrays; those arrays go to
your *real* cache

● Other questions in office hours

fork() basic functionality

● Copies the entire current process and runs it
concurrently as a separate process

● Returns twice:
○ To the new child process: 0
○ To the parent process: the child's process ID (pid)

● Use return value to distinguish which
process is currently being executed

fork() semantics

● What needs to be copied when fork() is
called?

● Goal is for child to run identically
● All memory owned by the parent process

must be copied to the child process
○ The address space is usually not copied all at once
○ Copy-on-write: OS copies a page of memory only

when the child writes to the page
● Other things are copied, too, but copying

memory is the most expensive operation

wait()

● Parent process waits for the child process to
return (exit) before continuing

● Returns the process id (pid) of the child
● Takes an optional parameter

○ Type (int *), pointer to an int
○ Receives the exit status of the child process

waitpid()

● Just like wait(), but takes a pid as a
parameter, so it is only waiting for a specific
process to return

● Useful when you have many child processes
and want finer control

Wait/Fork example code
#include <stdio.h> /* printf, stderr, fprintf */
#include <sys/types.h> /* pid_t */
#include <unistd.h> /* _exit, fork */
#include <stdlib.h> /* exit */
#include <errno.h> /* errno */

int main(void)
{
 pid_t pid;
 pid = fork();
 if (pid == -1)
 {

/* Fork didn't work */

exit(-1);
 }
 if (pid == 0)
 {

/* Child Process: do stuff here */
 _exit(return_status);
 }
 else
 {

/* Parent Process: wait and then exit

int return_status;

waitpid(pid,&return_status,NULL);

/* Do stuff once child has exited */

exit(0);
 }
 return 0;
}

execve()

● Member of the exec() family of functions
● Executes a program in the current process
● Doesn't return unless there is an error
● Parameters:

○ Path to the executable
○ Array of arguments
○ Environment variables (tip on next slide)

Subtle exec() tip

● For commands without path ('ls' vs '/bin/ls')
● Some exec() calls try to load environment

variables to resolve the path
● Add this declaration before main():

○ extern char **environ
● Now pass NULL as an environment variable

argument to the exec() call
Ex: execve("/bin/pwd", NULL, NULL);

Fork-Exec model

● Exec is powerful, but it is limited because it
never returns

● What if you want to call another executable
within your program?
○ Fork a child process
○ Use exec() in the child process
○ Make the parent wait for the child to exit
○ Continue working in the parent process

Fork-Exec example code
#include <stdio.h> /* printf, stderr, fprintf */
#include <sys/types.h> /* pid_t */
#include <unistd.h> /* _exit, fork */
#include <stdlib.h> /* exit */
#include <errno.h> /* errno */

extern char **environ;

int main(void)
{
 pid_t pid;
 pid = fork();
 if (pid == -1)
 {

/* Fork didn't work */

exit(-1);
 }
 if (pid == 0)
 {

/* Child process, call exec */

execve("/bin/ls",NULL,NULL);
 }
 else
 {

/* Parent Process: wait and then exit

int return_status;

waitpid(pid,&return_status,NULL);

/* Do stuff once child has exited */

exit(0);
 }
 return 0;
}

Sample programs

● Will be available on the class calendar later
● One is a simple fork/wait example
● One shows how the fork-exec model works

Do demos for the rest of class

