
CSE 351 Section 2
C Debugging with GDB

http://goo.gl/3dHdz

http://goo.gl/3dHdz
http://goo.gl/3dHdz

Lab 1

Lab 1 Tips

● Do a smaller version (i.e. 8-bit) on paper
● If you shift by more than the word size,

behavior is undefined
○ 0x01<<32 will not always be 0x00

● Think about how you can use bitwise
operations to create numbers

● Disregard operator restrictions at first, just
get it working

● Don't do it all in one line; use intermediate
steps and printf() statements

● If you get stuck, move on

Lab 1 Questions?

● Office hours today in CSE002
● Read the discussion board
● Email Gaetano or the TAs
● Can answer clarification questions now

Debugging with GDB

What is GDB?

● GNU Project Debugger
● Offers four basic functionalities

○ Runs your program
○ Allows you to set breakpoints to stop execution
○ Allows you to inspect the state of your program once

execution is stopped
○ Lets you fix bugs within GDB

● The sooner you get comfortable with GDB,
the easier this class will be

C-level Debugging

● GDB has many advanced features
● Today we will cover the top level of GDB

○ Running your program
○ Stepping through C code
○ Setting breakpoints in C code
○ Examining variable values
○ Examining locations in memory

Compile Program for GDB

● When compiling with gcc, use the -g flag
 gcc -g <source.c> -o <name>

Running GDB

● To start up GDB, simply run
gdb <executable>

● Once GDB has started up, type run to
execute your program from within GDB

● To exit GDB, type quit

Setting Breakpoints

● If you just run your program, it keeps going
until completion without stopping.

● Breakpoints allow us to pause at various
parts of our program.

● Stop when we reach a certain function:
 break <function-name>

● Stop when we reach an instruction address:
 break <address>

Stepping Through C

● When our program is paused, we need to
step to the next instruction:

● Execute one or several C statements
 step or step <# to skip>

● Execute one assembly command
 stepi or stepi <# to skip>

Examining Program State

Two main ways to look at variables:

● By value (print):
print <var-name>
Also: print /x, print /d, print /t

● By address (x):
x <address> ex: x 0xFFABCDEF
Also: x /x, x /d

Example debugging run

Sample file:
http://goo.gl/tfT5a
wget http://www.cs.washington.edu/education/courses/cse351/12au/section-slides/gdb_example.c

To compile:
gcc -g gdb_example.c -o gdb_ex

Debugging commands:
 http://goo.gl/LcQfF

http://goo.gl/tfT5a
http://goo.gl/tfT5a
http://goo.gl/LcQfF

GDB Cheatsheet(s)

Should be very useful for the next lab
 http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.
pdf

(may add more later)

http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf

