CSE 351 Section 2

C Debugging with GDB
http://goo.gl/3dHdz



http://goo.gl/3dHdz
http://goo.gl/3dHdz

Lab 1



Lab 1 Tips

e Do a smaller version (i.e. 8-bit) on paper
e |f you shift by more than the word size,

behavior is undefined
o 0x01<<32 will not always be 0x00

e Think about how you can use bitwise
operations to create numbers

e Disregard operator restrictions at first, just
get it working

e Don'tdo it all in one line; use intermediate
steps and printf () statements

e |f you get stuck, move on



Lab 1 Questions?

Office hours today in CSE002

Read the discussion board

Email Gaetano or the TAs

Can answer clarification questions now



Debugging with GDB



What is GDB?

e GNU Project Debugger

e Offers four basic functionalities
o Runs your program
o Allows you to set breakpoints to stop execution
o Allows you to inspect the state of your program once
execution is stopped
o Lets you fix bugs within GDB

e The sooner you get comfortable with GDB,
the easier this class will be



C-level Debugging

e GDB has many advanced features

e Today we will cover the top level of GDB
o Running your program

Stepping through C code

Setting breakpoints in C code

Examining variable values

Examining locations in memory

O O O O



Compile Program for GDB

e \When compiling with gcc, use the —g flag
gcc —-g <source.c> -0 <name>



Running GDB

e To start up GDB, simply run
gdb <executable>

e Once GDB has started up, type run to

execute your program from within GDB
e To exit GDB, type quit



Setting Breakpoints

If you just run your program, it keeps going
until completion without stopping.

Breakpoints allow us to pause at various
parts of our program.

Stop when we reach a certain function:
break <function—-name>

Stop when we reach an instruction address:
break <address>



Stepping Through C

e \When our program is paused, we need to
step to the next instruction:

e EXxecute one or several C statements
step Or step <# to skip>

e EXxecute one assembly command
stepl Or stepi <# to skip>



Examining Program State

Two main ways to look at variables:

e By value (print):
print <var—-name>
Also: print /x, print /d, print /t

e By address (x):
X <address> ex. x OxFFABCDEF
Also: x /x, x /d



Example debugging run

Sample file:
http://go0.gl/tfTSa

wget http://www.cs.washington.edu/education/courses/cse351/12au/section-slides/gdb_example.c

To compile:
gcc —g gdb example.c -o gdb ex

Debugging commands:
http://goo.gl/LcQfF



http://goo.gl/tfT5a
http://goo.gl/tfT5a
http://goo.gl/LcQfF

GDB Cheatsheet(s)

Should be very useful for the next lab
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.

pdf
(may add more later)


http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf

