University of Washingto

Roadmap

- Memory & Data
- Integers/FP
- Machine code
- Assembly programming (x86)
- Procedures/Stacks
- Processes
- Virtual Memory
- Memory Allocation
- Java vs C

Autumn 2012

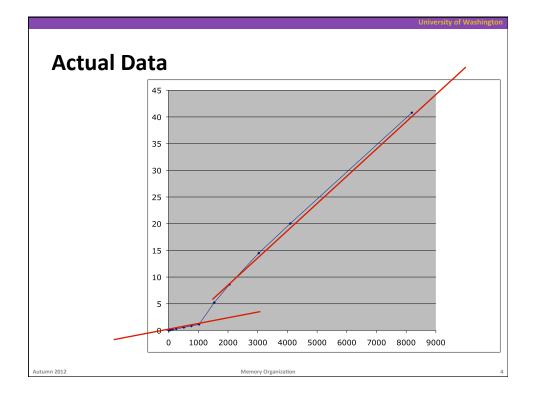
Memory Organization

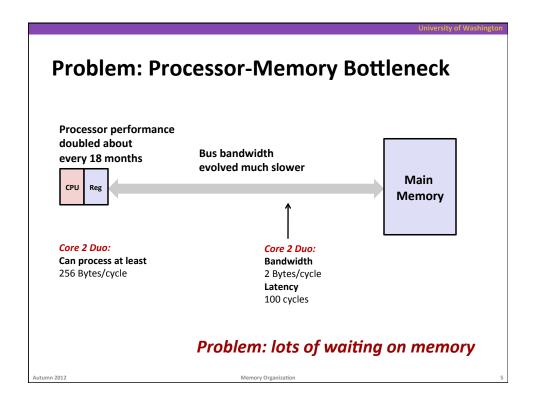
Iniversity of Wa

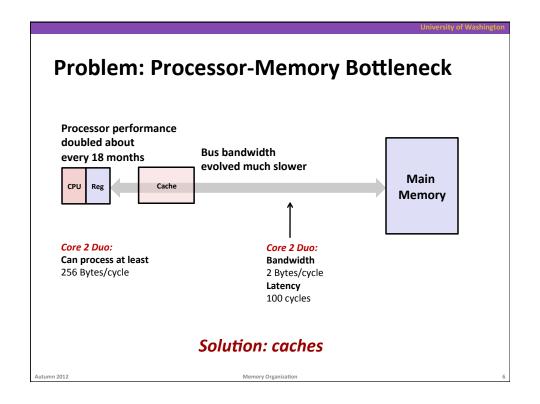
Making memory accesses fast!

- Memory hierarchy, caches, locality
- Cache organization
- Program optimizations that consider caches

utumn 2012


Memory Organization


How does execution time grow with SIZE?

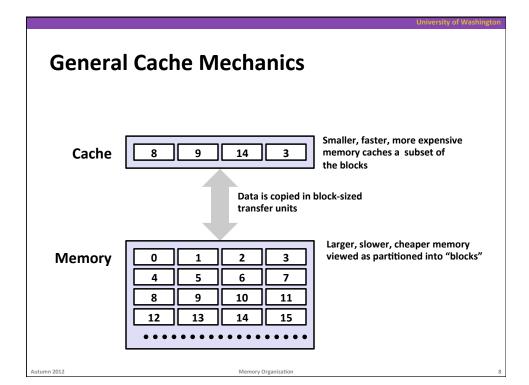

```
int array[SIZE];
int A = 0;

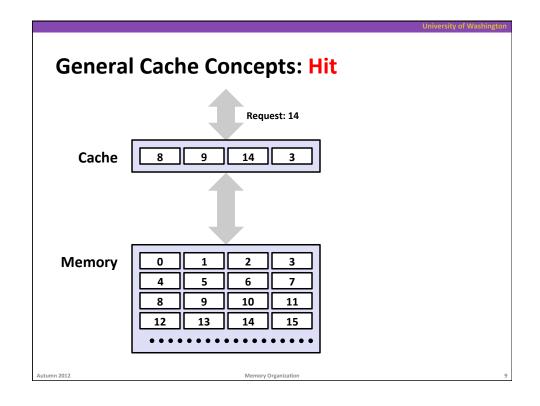
for (int i = 0 ; i < 2000000 ; ++ i) {
   for (int j = 0 ; j < SIZE ; ++ j) {
        A += array[j];
   }
}</pre>
TIME
Plot

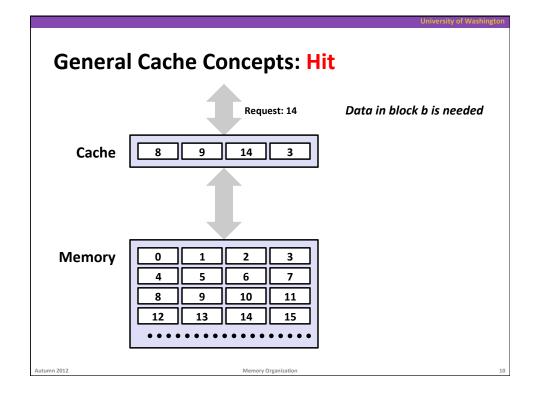
SIZE
```

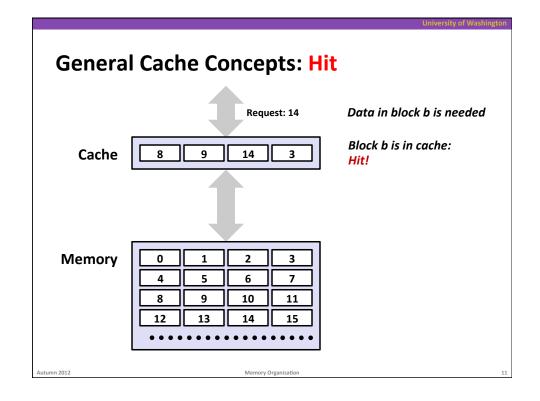

University of Washing

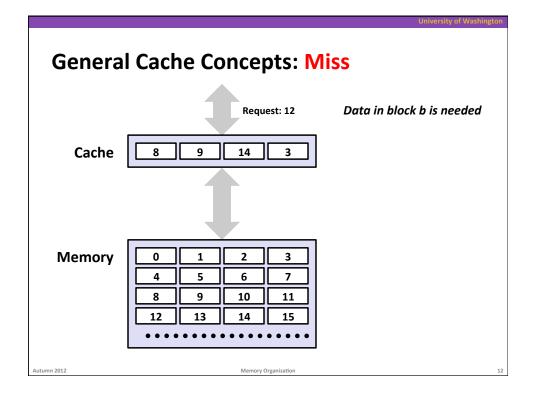
Cache

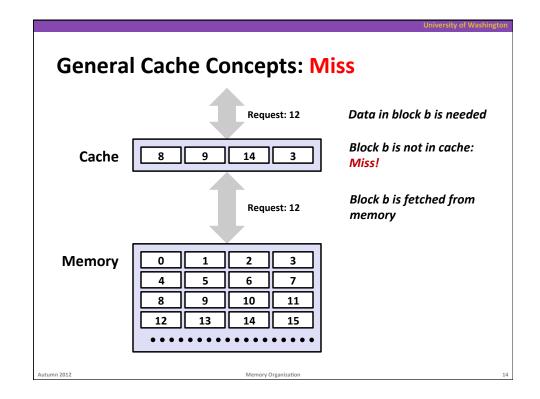

- English definition: a hidden storage space for provisions, weapons, and/or treasures
- CSE Definition: computer memory with short access time used for the storage of frequently or recently used instructions or data (i-cache and d-cache)

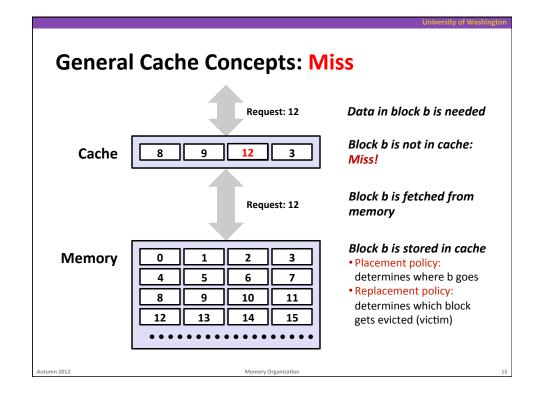

more generally,


used to optimize data transfers between system elements with different characteristics (network interface cache, I/O cache, etc.)


Autumn 201


Memory Organization





Jniversity of Washir

Lets think about those numbers

- Huge difference between a hit and a miss
 - Could be 100x, if just L1 and main memory
- Would you believe 99% hits is twice as good as 97%?
 - Consider: cache hit time of 1 cycle miss penalty of 100 cycles

utumn 2012

Memory Organization

Lets think about those numbers

- Huge difference between a hit and a miss
 - Could be 100x, if just L1 and main memory
- Would you believe 99% hits is twice as good as 97%?
 - Consider: cache hit time of 1 cycle miss penalty of 100 cycles
 - Average access time:
 - 97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
 - 99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles
- This is why "miss rate" is used instead of "hit rate"

Autumn 2012

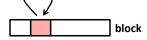
Memory Organizatio

University of Washingto

Why Caches Work

■ Locality: Programs tend to use data and instructions with addresses near or equal to those they have used recently

Autumn 2012


Memory Organization

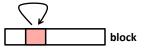
Why Caches Work

■ Locality: Programs tend to use data and instructions with addresses near or equal to those they have used recently

■ Temporal locality:

 Recently referenced items are likely to be referenced again in the near future

Why is this important?


Autumn 2012

Memory Organization

Jniversity of Washing

Why Caches Work

- Locality: Programs tend to use data and instructions with addresses near or equal to those they have used recently
- **■** Temporal locality:
 - Recently referenced items are likely to be referenced again in the near future

■ Spatial locality?

Autumn 2012

Memory Organization

Iniversity of Washingto

Why Caches Work

Locality: Programs tend to use data and instructions with addresses near or equal to those they have used recently

■ Temporal locality:

 Recently referenced items are likely to be referenced again in the near future

Spatial locality:

- Items with nearby addresses tend to be referenced close together in time
- How do caches take advantage of this?

Autumn 201

Aemory Organizatio

University of Washin

Example: Locality?

Data:

- Temporal: sum referenced in each iteration
- Spatial: array a [] accessed in stride-1 pattern

Instructions:

- Temporal: cycle through loop repeatedly
- Spatial: reference instructions in sequence
- Being able to assess the locality of code is a crucial skill for a programmer

Autumn 2012

Memory Organization

Locality Example #1

```
int sum_array_rows(int a[M][N])
{
   int i, j, sum = 0;
   for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            sum += a[i][j];
   return sum;
}</pre>
```

```
a[0][0] a[0][1] a[0][2]
a[1][0] a[1][1] a[1][2]
                             a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]
               1: a[0][0]
               2: a[0][1]
               3: a[0][2]
               4: a[0][3]
               5: a[1][0]
               6: a[1][1]
               7: a[1][2]
               8: a[1][3]
               9: a[2][0]
               10: a[2][1]
              11: a[2][2]
              12: a[2][3]
```

stride-1

Autumn 201

Memory Organization

Locality Example #2

```
int sum_array_cols(int a[M][N])
{
    int i, j, sum = 0;

    for (j = 0; j < N; j++)
        for (i = 0; i < M; i++)
            sum += a[i][j];
    return sum;
}</pre>
```

```
a[0][0] a[0][1] a[0][2]
a[1][0] a[1][1]
                              a[1][3]
                   a[1][2]
a[2][0]
         a[2][1]
                    a[2][2]
                              a[2][3]
                1: a[0][0]
                2: a[1][0]
                3: a[2][0]
                4: a[0][1]
                5: a[1][1]
                6: a[2][1]
                7: a[0][2]
                8: a[1][2]
                9: a[2][2]
               10: a[0][3]
               11: a[1][3]
               12: a[2][3]
```

stride-N

utumn 2012

Memory Organization

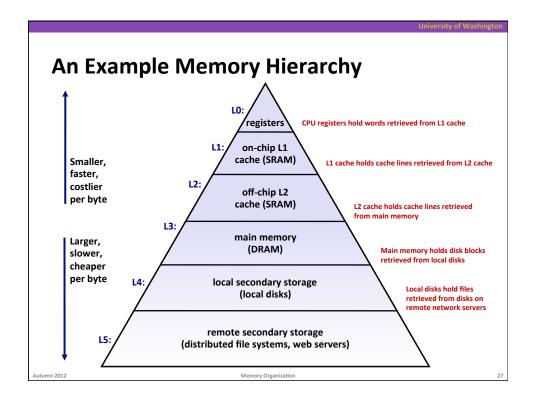
University of Washington

Locality Example #3

- What is wrong with this code?
- How can it be fixed?

Autumn 2012

Memory Organization


Memory Hierarchies

- Some fundamental and enduring properties of hardware and software systems:
 - Faster storage technologies almost always cost more per byte and have lower capacity
 - The gaps between memory technology speeds are widening
 - True for: registers \leftrightarrow cache, cache \leftrightarrow DRAM, DRAM \leftrightarrow disk, etc.
 - Well-written programs tend to exhibit good locality
- These properties complement each other beautifully
- They suggest an approach for organizing memory and storage systems known as a memory hierarchy

Autumn 2012

Memory Organization

- 2

University of Washing

Cache Performance Metrics

Miss Rate

- Fraction of memory references not found in cache (misses / accesses)
 = 1 hit rate
- Typical numbers (in percentages):
 - ypical flumbers (in percentages)
 - can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time

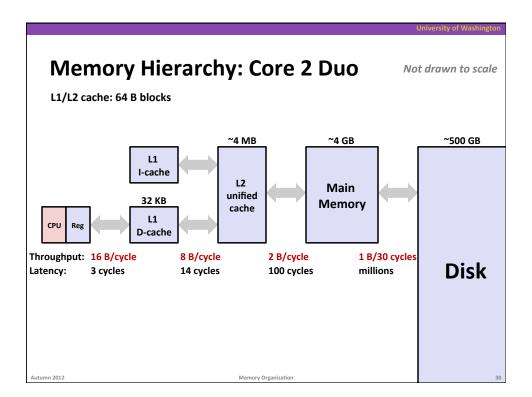
- Time to deliver a line in the cache to the processor
 - includes time to determine whether the line is in the cache
- Typical numbers:

• 3-10% for L1

- 1-2 clock cycle for L1
- 5-20 clock cycles for L2

Miss Penalty

- Additional time required because of a miss
 - typically 50-200 cycles for main memory (trend: increasing!)


utumn 2012

Memory Organization

Examples of Caching in the Hierarchy

Cache Type	What is Cached?	Where is it Cached?	Latency (cycles)	Managed By
Registers	4/8-byte words	CPU core	0	Compiler
TLB	Address translations	On-Chip TLB	0	Hardware
L1 cache	64-bytes block	On-Chip L1	1	Hardware
L2 cache	64-bytes block	Off-Chip L2	10	Hardware
Virtual Memory	4-KB page	Main memory	100	Hardware+OS
Buffer cache	Parts of files	Main memory	100	os
Network cache	Parts of files	Local disk	10,000,000	File system client
Browser cache	Web pages	Local disk	10,000,000	Web browser
Web cache	Web pages	Remote server disks	1,000,000,000	Web server

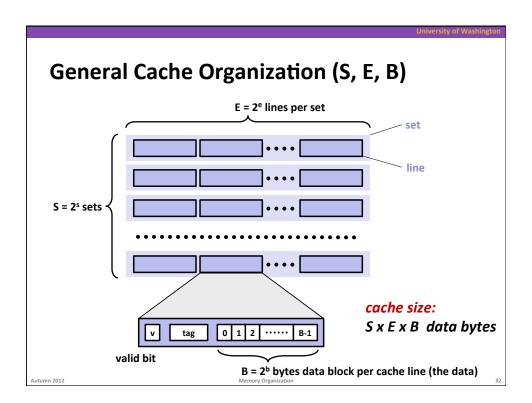
autumn 2012 Memory Organization

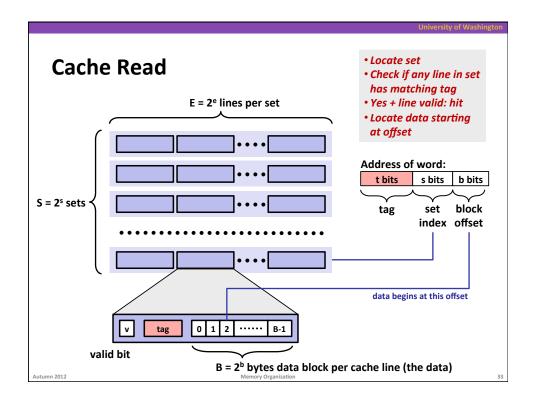
Jniversity of Washingto

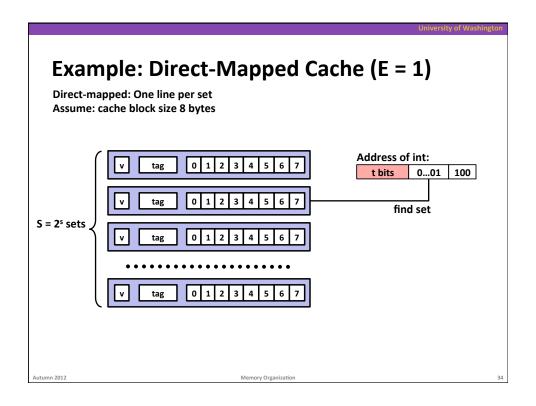
Types of Cache Misses

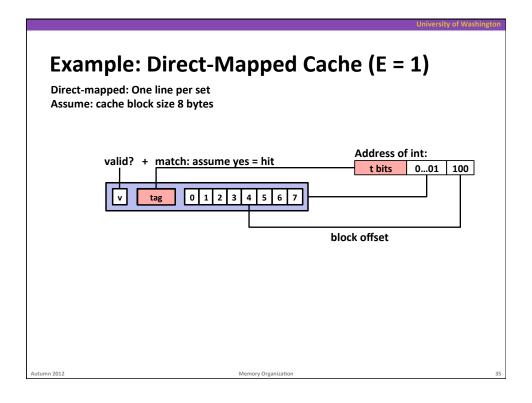
Cold (compulsory) miss

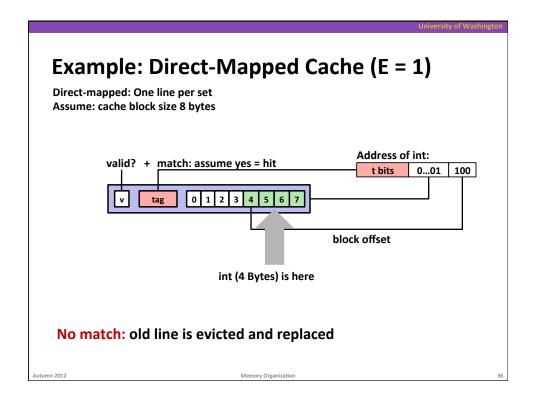
Occurs on first access to a block

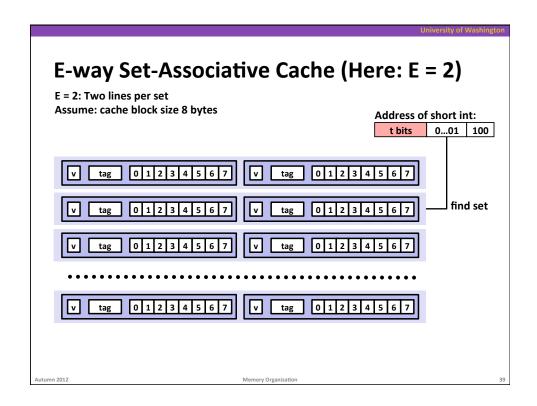

Conflict miss

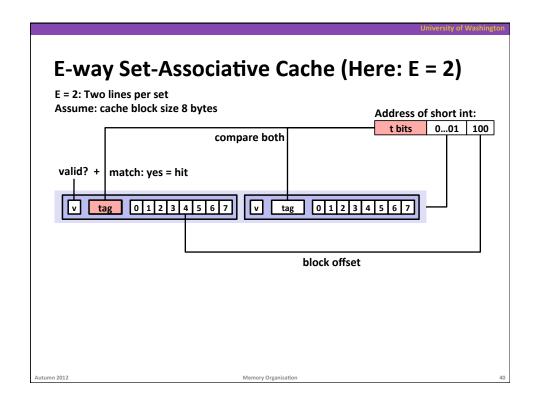

- Most hardware caches limit blocks to a small subset (sometimes just one) of the available cache slots
 - if one (e.g., block i must be placed in slot (i mod size)),
 direct-mapped
 - if more than one,
 n-way set-associative (where n is a power of 2)
- Conflict misses occur when the cache is large enough, but multiple data objects all map to the same slot
 - e.g., referencing blocks 0, 8, 0, 8, ... would miss every time

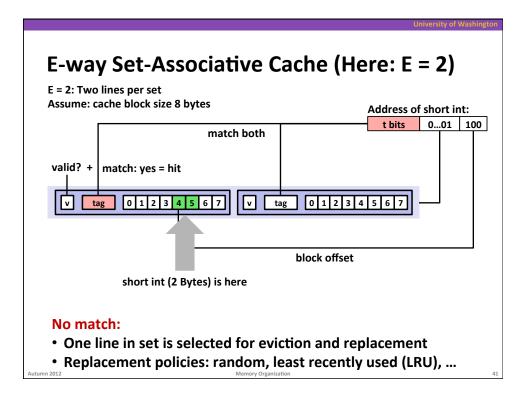

Capacity miss


Occurs when the set of active cache blocks (the working set) is larger than the cache (just won't fit)


Autumn 2012

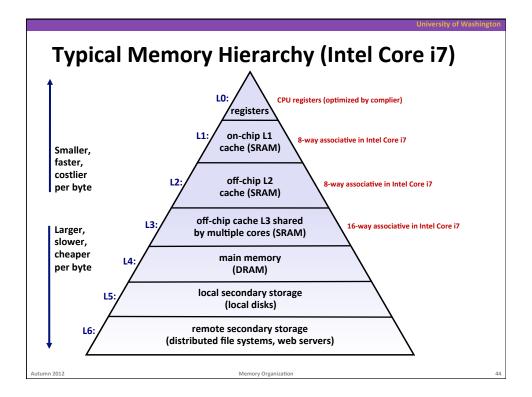






Assume sum, i, j in registers Example (for E =1) Address of an aligned element of a: aa....aaxxxxyyyy000 int sum array rows (double a[16][16]) Assume: cold (empty) cache 3 bits for set, 5 bits for byte int i, j; double sum = 0; aa....aaxxx xyy yy000 for (i = 0; i < 16; i++)0,0 0,1 0,2 0,3 for (j = 0; j < 16; j++)0,4 0,5 0,6 0,7 sum += a[i][j]; return sum; 0,8 0,9 0,a 0,b 0,d 0,e 0,f 1,0 1,1 1,2 1,3 3,0 3,1 3,2 3,3 int sum_array_cols(double a[16][16]) **1,4 1,5 1,6 1,7** int i, j; double sum = 0; 1,8 1,9 1,a 1,b 1,c 1,d 1,e 1,f for (j = 0; j < 16; j++)for (i = 0; i < 16; i++)sum += a[i][j]; 32 B = 4 doubles **32** B = 4 doubles return sum; 4 misses per row of array every access a miss 4*16 = 64 misses 16*16 = 256 misses Memory Organization

Example (for E = 1) float dotprod(float x[8], float y[8]) float sum = 0; int i; for (i = 0; i < 8; i++)sum += x[i]*y[i];return sum: x[0] x[1] x[2] x[3] x[0] x[1] x[2] x[3] x[5] x[6] x[7] x[8] if x and y have aligned if x and y have unaligned starting addresses, starting addresses, e.g., &x[0] = 0, &y[0] = 128e.g., &x[0] = 0, &y[0] = 144 y[1] y[2] y[3] y<mark>[5]</mark> y[6] y[7] y[8]


Example (for E = 2) float dotprod(float x[8], float y[8]) float sum = 0; int i; for (i = 0; i < 8; i++)sum += x[i]*y[i];return sum; if x and y have aligned x[0] x[1] x[2] x[3] y[0] y[1] y[2] y[3] starting addresses, (<mark>[4]</mark> x[5] x[6] x[7] <mark>y[4]</mark> y[5] y[6] y[7] e.g., &x[0] = 0, &y[0] = 128 still can fit both because 2 lines in each set

University of Washingto

Fully Set-Associative Caches (S = 1)

- All lines in one single set, S = 1
 - E = C / B, where C is total cache size
 - Since, S = (C/B)/E, therefore, S = 1
- Direct-mapped caches have E = 1
 - S = (C/B)/E = C/B
- Tags are more expensive in associative caches
 - Fully-associative cache, C / B tag comparators
 - Direct-mapped cache, 1 tag comparator
 - In general, E-way set-associative caches, E tag comparators
- Tag size, assuming m address bits (m = 32 for IA32)
 - m log₂S log₂B

Autumn 2012 Memory Organization 45

What about writes?

Multiple copies of data exist:

L1, L2, Main Memory, Disk

What to do on a write-hit?

- Write-through (write immediately to memory)
- Write-back (defer write to memory until replacement of line)
 - Need a dirty bit (to indicate if line is different from memory or not)

What to do on a write-miss?

- Write-allocate (load into cache, update line in cache)
 - Good if more writes to the location follow
- No-write-allocate (writes immediately to memory)

Typical

- Write-through + No-write-allocate
- Write-back + Write-allocate

Autumn 201

Memory Organization

45

niversity of V

Software Caches are More Flexible

Examples

• File system buffer caches, web browser caches, etc.

Some design differences

- Almost always fully-associative
 - so, no placement restrictions
 - index structures like hash tables are common (for placement)
- Often use complex replacement policies
 - misses are very expensive when disk or network involved
 - worth thousands of cycles to avoid them
- Not necessarily constrained to single "block" transfers
 - may fetch or write-back in larger units, opportunistically

tumn 2012

Memory Organization

University of Washingto

Optimizations for the Memory Hierarchy

Write code that has locality

- Spatial: access data contiguously
- Temporal: make sure access to the same data is not too far apart in time

How to achieve?

- Proper choice of algorithm
- Loop transformations

Cache versus register-level optimization:

- In both cases locality desirable
- Register space much smaller
 - + requires scalar replacement to exploit temporal locality
- Register level optimizations include exhibiting instruction level parallelism (conflicts with locality)

utumn 2012 Memory Organization

University of Washingto

Example: Matrix Multiplication

```
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
   int i, j, k;
   for (i = 0; i < n; i++)
        for (j = 0; j < n; j++)
        for (k = 0; k < n; k++)
        c[i*n + j] += a[i*n + k]*b[k*n + j];
}</pre>
```

```
c = a * b
```

utumn 2012

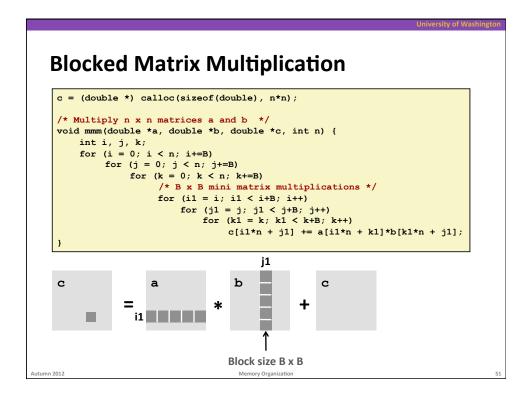
Memory Organization

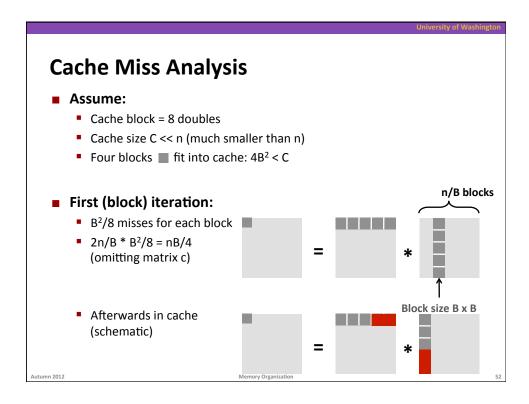
Cache Miss Analysis

Assume:

Matrix elements are doubles

Cache block = 8 doubles

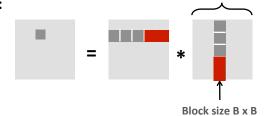

Cache size C << n (much smaller than n)


First iteration:

n/8 + n = 9n/8 misses
(omitting matrix c)

Afterwards in cache:
(schematic)

Cache Miss Analysis Assume: Matrix elements are doubles Cache block = 8 doubles Cache size C << n (much smaller than n) Other iterations: Again: n/8 + n = 9n/8 misses (omitting matrix c) Total misses: 9n/8 * n² = (9/8) * n³



Iniversity of Washi

n/B blocks

Cache Miss Analysis

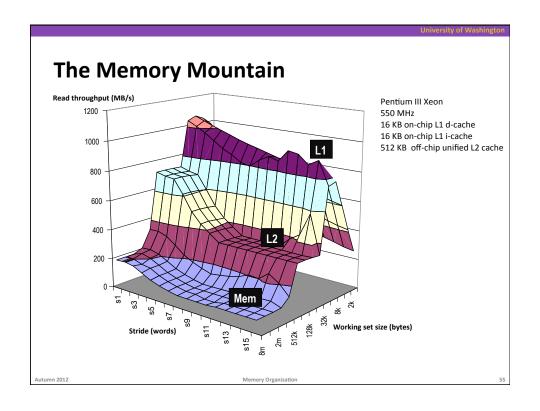
- Assume:
 - Cache block = 8 doubles
 - Cache size C << n (much smaller than n)
 - Three blocks fit into cache: 3B² < C
- Other (block) iterations:
 - Same as first iteration
 - $2n/B * B^2/8 = nB/4$

- Total misses:
 - $nB/4 * (n/B)^2 = n^3/(4B)$

Autumn 201

Nemory Organizatio

53


University of Wash

Summary

- No blocking: (9/8) * n³
- Blocking: 1/(4B) * n³
- If B = 8 difference is 4 * 8 * 9 / 8 = 36x
- If B = 16 difference is 4 * 16 * 9 / 8 = 72x
- Suggests largest possible block size B, but limit 4B² < C! (can possibly be relaxed a bit, but there is a limit for B)
- Reason for dramatic difference:
 - Matrix multiplication has inherent temporal locality:
 - Input data: 3n², computation 2n³
 - Every array element used O(n) times!
 - But program has to be written properly

Autumn 2012

Memory Organization

