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Today’s Topics

m Floating Point Numbers

Background: Fractional binary numbers
IEEE floating point standard: Definition
Example and properties

Rounding, addition, multiplication
Floating pointin C

Summary
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Fractional binary numbers

= Whatis 1011.101?
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Fractional Binary Numbers
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m Representation
= Bits to right of “binary point” represent fractional powers of 2
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= Represents rational number:
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Fractional Binary Numbers: Examples

m Value Representation
= 5and3/4 101.11,
= 2and7/8 10.111,
" 63/64 0.111111,

m Observations
= Divide by 2 by shifting right
= Multiply by 2 by shifting left
® Numbers of theform 0.111111.., are just below 1.0
= 1/2+1/4+1/8+..+1/21+..— 1.0
= Use notation 1.0 —¢
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Representable Numbers

m Limitation
= Can only exactly represent numbers of the form x/2k
= QOther rational numbers have repeating bit representations

m Value Representation
= 1/3 0.0101010101[01]..,
= 1/5 0.001100110011[0011]..,

= 1/10 0.0001100110011[0011]..,
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Fixed Point Representation

m float - 32 bits; double - 64 bits

m We might try representing fractional binary numbers by
picking a fixed place for an implied binary point
= “fixed point binary numbers”
m Let's do that, using 8 bit floating point numbers as an
example
= #1: the binary point is between bits 2 and 3
b, bg bsb, by [.1b, b, b,
= #2:the binary point is between bits 4 and 5
b, bg b [.1b, by b, b; by
= The position of the binary point affects the range and precision
= range: difference between largest and smallest numbers possible
= precision: smallest possible difference between any two numbers
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Fixed Point Pros and Cons

m Pros

® |t's simple. The same hardware that does integer arithmetic can do
fixed point arithmetic

= In fact, the programmer can use ints with an implicit fixed point
— E.g., int balance; // number of pennies in the account

= ints are just fixed point numbers with the binary point

to the right of b,
m Cons
= There is no good way to pick where the fixed point should be
= Sometimes you need range, sometimes you need precision
= The more you have of one, the less of the other
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What else could we do?
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IEEE Floating Point

m Fixing fixed point: analogous to scientific notation
= Not 12000000 but 1.2 x 107; not 0.0000012 but 1.2 x 10®
m |EEE Standard 754
= Established in 1985 as uniform standard for floating point arithmetic
= Before that, many idiosyncratic formats
= Supported by all major CPUs
m Driven by numerical concerns

= Nice standards for rounding, overflow, underflow
= Hard to make fast in hardware

= Numerical analysts predominated over hardware designers in
defining standard
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Floating Point Representation

m Numerical Form:
(-1)5* m * 2F
= Sign bit s determines whether number is negative or positive
= Significand (mantissa) M normally a fractional value in range [1.0,2.0).
= Exponent E weights value by power of two

m Encoding
= MSB s is sign bit s
= frac field encodes M (but is not equal to M)
= exp field encodes E (but is not equal to E)

|s[exp | frac
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Precisions

m Single precision: 32 bits

|slexp [£rac
1 8 23

m Double precision: 64 bits

|slexp [£rac
1 11 52

m Extended precision: 80 bits (Intel only)

|slexp [£rac
1 15 63 or 64
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Normalization and Special Values

m “Normalized” means mantissa has form 1.xxxxx

= 0.011x 2° and 1.1 x 23 represent the same number, but the latter makes
better use of the available bits

= Since we know the mantissa starts with a 1, don't bother to store it

m How do we represent 0.0? How about 1.0/0.0?
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Normalization and Special Values

m “Normalized” means mantissa has form 1.xxxxx

= 0.011 x 2° and 1.1 x 23 represent the same number, but the latter makes
better use of the available bits

= Since we know the mantissa starts with a 1, don't bother to store it

m Special values:
® The float value 00...0 represents zero
= |f the exp == 11...1 and the mantissa == 00...0, it represents «
= E.g.,1.0/0.0=-1.0/-0.0=+%, 1.0/-0.0=-1.0/0.0 = -0
m If the exp == 11...1 and the mantissa != 00...0, it represents NaN
= “Not a Number”
= Results from operations with undefined result
= E.g., sqrt(-1), 0 — o0, 0 * (0
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Normalized Values

m Condition: exp = 000...0 and exp = 111...1

m Exponent coded as biased value: exp = E + Bias
= exp is an unsigned value ranging from 1 to 2-2
= Allows negative values for E ( = exp — Bias)
= Bias = 281 - 1, where e is number of exponent bits (bits in exp)
= Single precision: 127 (exp: 1...254, E: -126...127)
= Double precision: 1023 (exp: 1...2046, E: -1022...1023)

m Significand coded with implied leading 1: M = 1.xxx..x,
" xxx..X: bits of frac
= Minimum when 000...0 (M =1.0)
= Maximum when 111..1 (M =2.0—¢)
= Get extra leading bit for “free”
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Normalized Encoding Example

m Value: Float F = 12345.0;
® 12345,, =11000000111001,
=1.1000000111001, x 213

m Significand
M = 1.1000000111001,
frac= 10000001110010000000000,
m Exponent
E = 13
Bias = 127
exp = 140 = 10001100,
= Result:
@llOOOllOOl|10000001110010000000000|
s exp frac
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How do we do operations?

m Is representation exact?
m How are the operations carried out?
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Floating Point Operations: Basic Idea

mx +, y = Round(x + y)
m X * y = Round(x * y)

m Basicidea
= First compute exact result
= Make it fit into desired precision
= Possibly overflow if exponent too large
= Possibly round to fit into frac
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Floating Point Multiplication
(_1)51 M1 2Er * (_1)52 M2 2E2

m Exact Result: (-1)s M 2F

= Signs: s1/7s2 // xor of s1 and s2
= Significand M: M1 * M2
= Exponent E: E1+E2

m Fixing

= |f M > 2, shift M right, increment E
= |f E out of range, overflow
= Round M to fit frac precision
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Floating Point Addition

(-1t M1 282 + (-1)2 M2 2F2 Assume E1 > E2

[ E1-£2 —

m Exact Result: (-1)s M 2F
[ (12m1 |

= Sign s, significand M:

= Result of signed align & add + | (=1)52 M2 |

= ExponentE: E1

[ (=1 M |

m Fixing
= |f M > 2, shift M right, increment E
= if M < 1, shift M left k positions, decrement E by k
= Qverflow if E out of range
= Round M to fit frac precision
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Hmm... if we round at every operation...
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Mathematical Properties of FP Operations

m Not really associative or distributive due to rounding
m Infinities and NaNs cause issues
m Overflow and infinity
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Floating Point in C

m C Guarantees Two Levels
float single precision
double double precision

m Conversions/Casting

® Casting between int, float, and double changes bit representation
" Double/float - int
= Truncates fractional part
= Like rounding toward zero
= Not defined when out of range or NaN: generally sets to TMin
" int > double
= Exact conversion, as long as int has < 53-bit word size
" int - float
= Will round according to rounding mode

Autumn 2012
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Memory Referencing Bug

double fun(int i)
{
volatile double d[1l] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];
}

fun(0) -> 3.14

fun(l) -> 3.14

fun(2) -> 3.1399998664856

fun(3) > 2.00000061035156

fun(4) -> 3.14, then segmentation fault

Explanation: saved state 4
d7 .. d4 3
d3 .. do 2 Locatic.m accessed by
fun (i)
afl] 1
a[o] 0
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Representing 3.14 as a Double FP Number

m 1073741824 = 0100 0000 0000 0000 0000 0000 0000 0000
= 3.14=11.00100011 1101 0111 0000 1010 000...
m (-1)°M 2f

= S=0 encodedas 0

= M =1.10010001 11101011 1000 0101 000.... (leading 1 left out)
= E=1 encoded as 1024 (with bias)

|s|exp (11) |frac (first 20 bits) |
0 10000000000 1001000111101011 1000

|frac (the other 32 bits) |
0101 0000 ...
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Memory Referencing Bug (Revisited)

double fun(int i)
{
volatile double d[1l] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];
}

fun(0) -> 3.14

fun(l) -> 3.14

fun(2) -> 3.1399998664856

fun(3) > 2.00000061035156

fun(4) -> 3.14, then segmentation fault

Saved State 4
d7 .. d4 01000000 0000 1001 0001 1110 10111000 3
d3 .. d0 01010000 ... 2 Location
accessed
a[1] 1 | byfun(i)
a[0] 0
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Memory Referencing Bug (Revisited)

double fun(int i)
{
volatile double d[1l] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];
}

fun(0) —> 3.14
fun(l) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14, then segmentation fault
Saved State 4
d7 .. d4 01000000 00001001 0001 111010111000 3
Location
d3 .. 40 01000000 0000 0000 0000 0000 0000 0000 2
accessed
a[1] 1 | pyfun(i)
0

a[o0]
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Memory Referencing Bug (Revisited)

double fun(int i)
{
volatile double d[1l] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}
fun(0) -> 3.14
fun(l) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14, then segmentation fault
Saved State 4
d7 .. d4 0100 0000 0000 0000 0000 0000 0000 0000 3
d3 . do 01010000.. p  Location
accessed
a[1] 1 | bpyfun(i)
a[0] 0
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Floating Point and the Programmer

#include <stdio.h>
int main(int argc, char* argv[]) {

float f1

float f2

int i;

for ( i=0; i<10; i++ ) {
£f2 += 1.0/10.0;

}

1.0;
0.0;

printf ("0x%08x 0x%08x\n", *(int*)&fl, *(int*)&f2); $ ./a.out
printf("£f1 = %10.8£\n", £1); 0x3£800000 0x3£800001
printf("£2 = %$10.8f\n\n", £2); £1 = 1.000000000
£2 = 1.000000119
f1 = 1E30;
f2 = 1E-30; fl == £3? yes
float £3 = f1 + £2;
printf ("fl == £3? %s\n", fl == £3 ? "yes" : "no" );

return 0;
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Summary

m As with integers, floats suffer from the fixed number of bits
available to represent them
= Can get overflow/underflow, just like ints
= Some “simple fractions” have no exact representation
« Eg,0.1
® Can also lose precision, unlike ints
= “Every operation gets a slightly wrong result”

m Mathematically equivalent ways of writing an expression may
compute different results

= Violates associativity/distributivity

m NEVER test floating point values for equality!
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Additional details

Denormalized values — to get finer precision near zero
Tiny floating point example

Distribution of representable values

Rounding
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Denormalized Values

m Condition: exp = 000...0

m Exponent value: E = exp — Bias + 1 (instead of E = exp — Bias)
m Significand coded with implied leading 0: M = 0 . xxx...x,

= XXX..X: bits of frac
m Cases

" exp=000..0,frac=000..0

= Represents value 0

= Note distinct values: +0 and —0 (why?)
" exp=000..0, frac=000..0

= Numbers very close to 0.0

= Lose precision as get smaller

= Equispaced

Autumn 2012 Floating Point Numbers 31

University of Washington

Special Values

m Condition: exp=111...1

m Case:exp=111..1, frac=000..0

= Represents value o (infinity)
= Qperation that overflows
= Both positive and negative

= Eg,1.0/0.0=-1.0/-0.0=+%, 1.0/-0.0=-1.0/0.0=-

m Case: exp=111..1, frac=000..0
= Not-a-Number (NaN)
= Represents case when no numeric value can be determined
= E.g., sqrt(-1), 0 — o0, 00 ¥
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Visualization: Floating Point Encodings

. . +00
-Normalized | -Denorm : ; :+Denorm; +Normalized |
! 1

| Taln:
/\
-0 +0 IM'

Floating Point Numbers
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Tiny Floating Point Example

|s|exp |frac|
1 4 3

m 8-bit Floating Point Representation
= the sign bit is in the most significant bit.
= the next four bits are the exponent, with a bias of 7.

= the last three bits are the frac

m Same general form as IEEE Format
" normalized, denormalized
= representation of 0, NaN, infinity

Floating Point Numbers
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Dynamic Range (Positive Only)
s exp frac E Value
0 0000 00O -6 0
0 0000 001 -6 1/8*1/64 = 1/512 closest to zero
Denormalized 0 0000 010 -6 2/8*1/64 = 2/512
numbers
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512 largest denorm
0 0001 000 -6 8/8*1/64 = 8/512 smallest norm
0 0001 001 -6 9/8*1/64 = 9/512
0 0110 110 -1 14/8*1/2 = 14/16
. 0 0110 111 -1 15/8*%1/2 = 15/16 closestto 1 below
NEIEIRGEL ) gaesl aow 8/8x1 =1
numbers 0 0111 001 0 9/8*%1 = 9/8 closest to 1 above
0 0111 o010 0 10/8*1 = 10/8
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240 largest norm
0 1111 000 n/a inf
Autumn 2012 Floating Point Numbers 35

University of Washington

Distribution of Values

m 6-bit IEEE-like format
= e =3 exponent bits | S | exp | frac |
= f=2 fraction bits 1 3 2
= Biasis231-1=3

m Notice how the distribution gets denser toward zero.

A A A A A A A AAAAMMMEIRMMA AL A A A A A — A —A—A

-15 -10 -5 0 5 10 15
¢ Denormalized A Normalized  Infinity

Autumn 2012 Floating Point Numbers 36




University of Washington

Distribution of Values (close-up view)

m 6-bit IEEE-like format
= e =3 exponent bits
» f=2 fraction bits 1 3 2
= Biasis 3

|s|exp |frac|

— et
-1 -0.5 0 0.5 1
¢ Denormalized A Normalized @ Infinity\
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Interesting Numbers {single,double}
Description exp frac Numeric Value

m Zero 00..00 00...00 0.0

m Smallest Pos. Denorm. 00..00 00...01 2 123,52} % - {126,1022}

= Single=1.4* 10
= Double =~4.9 * 10-3%
m Largest Denormalized 00..00 11..11 (1.0 —¢) * 2~ {126,202}
" Single~1.18 * 10738
= Double ~2.2 * 107308

m Smallest Pos. Norm.  00..01 00...00 1.0 * 2- {126,022}
= Just larger than largest denormalized
m One 01..11 00...00 1.0
m Largest Normalized 11..10 11..11 (2.0 — g) * 211271023}

" Single ~ 3.4 * 1038
" Double ~1.8 * 10308
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Special Properties of Encoding

m Floating point zero (0*) exactly the same bits as integer zero
= All bits =0

m Can (Almost) Use Unsigned Integer Comparison
® Must first compare sign bits
® Must consider0-=0"=0
®= NaNs problematic
= Will be greater than any other values
= What should comparison yield?
= Otherwise OK
= Denorm vs. normalized
= Normalized vs. infinity
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Rounding

m Rounding Modes (illustrate with $ rounding)

$1.40 $1.60 $1.50 $2.50 -$1.50

= Towards zero S1 S1 S1 S2 -$1
= Round down (-) S1 S1 S1 S2 -S2
= Round up (+) S2 S2 S2 S3 -S1
= Nearest (default) S1 S2 S2 S2 -S2

m What are the advantages of the modes?
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Closer Look at Round-To-Nearest

m Default Rounding Mode
® Hard to get any other kind without dropping into assembly
= All others are statistically biased

= Sum of set of positive numbers will consistently be over- or under-
estimated

m Applying to Other Decimal Places / Bit Positions

= When exactly halfway between two possible values
= Round so that least significant digit is even

® E.g., round to nearest hundredth
1.2349999 1.23
1.2350001 1.24
1.2350000 1.24
1.2450000 1.24

(Less than half way)
(Greater than half way)
(Half way—round up)
(Half way—round down)

Floating Point Numbers a1
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Rounding Binary Numbers

m Binary Fractional Numbers
= “Half way” when bits to right of rounding position=100...,

m Examples
= Round to nearest 1/4 (2 bits right of binary point)
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Value Binary Rounded  Action Rounded Value
23/32 10.00011, 10.00, (<1/2—down) 2

23/16 10.00110, 10.01, (>1/2—up) 21/4

27/8 10.11100, 11.00, ( 1/2—up) 3

25/8 10.10100, 10.10, ( 1/2—down) 21/2
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