University of Washington

Today’s Topics

m Floating Point Numbers

Background: Fractional binary numbers
IEEE floating point standard: Definition
Example and properties

Rounding, addition, multiplication
Floating pointin C

Summary

Autumn 2012 Floating Point Numbers 1

University of Washington

Fractional binary numbers

= Whatis 1011.101?

Autumn 2012 Floating Point Numbers 2

University of Washington

Fractional Binary Numbers

2[
2[—1

bz bl;] coe b2 bl bo._Tl b72 b73 eee b,j
1/2
1/4 s
1/8
2-J

m Representation
= Bits to right of “binary point” represent fractional powers of 2

ibk 2k
ey

= Represents rational number:

Autumn 2012 Floating Point Numbers 3

University of Washington

Fractional Binary Numbers: Examples

m Value Representation
= 5and3/4 101.11,
= 2and7/8 10.111,
" 63/64 0.111111,

m Observations
= Divide by 2 by shifting right
= Multiply by 2 by shifting left
® Numbers of theform 0.111111.., are just below 1.0
= 1/2+1/4+1/8+..+1/21+..— 1.0
= Use notation 1.0 —¢

Autumn 2012 Floating Point Numbers 4

University of Washington

Representable Numbers

m Limitation
= Can only exactly represent numbers of the form x/2k
= QOther rational numbers have repeating bit representations

m Value Representation
= 1/3 0.0101010101[01]..,
= 1/5 0.001100110011[0011]..,

= 1/10 0.0001100110011[0011]..,

Autumn 2012 Floating Point Numbers 5

University of Washington

Fixed Point Representation

m float - 32 bits; double - 64 bits

m We might try representing fractional binary numbers by
picking a fixed place for an implied binary point
= “fixed point binary numbers”
m Let's do that, using 8 bit floating point numbers as an
example
= #1: the binary point is between bits 2 and 3
b, bg bsb, by [.1b, b, b,
= #2:the binary point is between bits 4 and 5
b, bg b [.1b, by b, b; by
= The position of the binary point affects the range and precision
= range: difference between largest and smallest numbers possible
= precision: smallest possible difference between any two numbers

Autumn 2012

Floating Point Numbers 6

University of Washington

Fixed Point Pros and Cons

m Pros

® |t's simple. The same hardware that does integer arithmetic can do
fixed point arithmetic

= In fact, the programmer can use ints with an implicit fixed point
— E.g., int balance; // number of pennies in the account

= ints are just fixed point numbers with the binary point

to the right of b,
m Cons
= There is no good way to pick where the fixed point should be
= Sometimes you need range, sometimes you need precision
= The more you have of one, the less of the other

Autumn 2012 Floating Point Numbers 7

University of Washington

What else could we do?

Autumn 2012 Floating Point Numbers 8

University of Washington

IEEE Floating Point

m Fixing fixed point: analogous to scientific notation
= Not 12000000 but 1.2 x 107; not 0.0000012 but 1.2 x 10®
m |EEE Standard 754
= Established in 1985 as uniform standard for floating point arithmetic
= Before that, many idiosyncratic formats
= Supported by all major CPUs
m Driven by numerical concerns

= Nice standards for rounding, overflow, underflow
= Hard to make fast in hardware

= Numerical analysts predominated over hardware designers in
defining standard

Autumn 2012 Floating Point Numbers 9

University of Washington

Floating Point Representation

m Numerical Form:
(-1)5* m * 2F
= Sign bit s determines whether number is negative or positive
= Significand (mantissa) M normally a fractional value in range [1.0,2.0).
= Exponent E weights value by power of two

m Encoding
= MSB s is sign bit s
= frac field encodes M (but is not equal to M)
= exp field encodes E (but is not equal to E)

|s[exp | frac

Autumn 2012 Floating Point Numbers 10

University of Washington

Precisions

m Single precision: 32 bits

|slexp [£rac
1 8 23

m Double precision: 64 bits

|slexp [£rac
1 11 52

m Extended precision: 80 bits (Intel only)

|slexp [£rac
1 15 63 or 64

Autumn 2012 Floating Point Numbers 11

University of Washington

Normalization and Special Values

m “Normalized” means mantissa has form 1.xxxxx

= 0.011x 2° and 1.1 x 23 represent the same number, but the latter makes
better use of the available bits

= Since we know the mantissa starts with a 1, don't bother to store it

m How do we represent 0.0? How about 1.0/0.0?

Autumn 2012 Floating Point Numbers 12

University of Washington

Normalization and Special Values

m “Normalized” means mantissa has form 1.xxxxx

= 0.011 x 2° and 1.1 x 23 represent the same number, but the latter makes
better use of the available bits

= Since we know the mantissa starts with a 1, don't bother to store it

m Special values:
® The float value 00...0 represents zero
= |f the exp == 11...1 and the mantissa == 00...0, it represents «
= E.g.,1.0/0.0=-1.0/-0.0=+%, 1.0/-0.0=-1.0/0.0 = -0
m If the exp == 11...1 and the mantissa != 00...0, it represents NaN
= “Not a Number”
= Results from operations with undefined result
= E.g., sqrt(-1), 0 — o0, 0 * (0

Autumn 2012 Floating Point Numbers 13

University of Washington

Normalized Values

m Condition: exp = 000...0 and exp = 111...1

m Exponent coded as biased value: exp = E + Bias
= exp is an unsigned value ranging from 1 to 2-2
= Allows negative values for E (= exp — Bias)
= Bias = 281 - 1, where e is number of exponent bits (bits in exp)
= Single precision: 127 (exp: 1...254, E: -126...127)
= Double precision: 1023 (exp: 1...2046, E: -1022...1023)

m Significand coded with implied leading 1: M = 1.xxx..x,
" xxx..X: bits of frac
= Minimum when 000...0 (M =1.0)
= Maximum when 111..1 (M =2.0—¢)
= Get extra leading bit for “free”

Autumn 2012 Floating Point Numbers 14

University of Washington

Normalized Encoding Example

m Value: Float F = 12345.0;
® 12345,, =11000000111001,
=1.1000000111001, x 213

m Significand
M = 1.1000000111001,
frac= 10000001110010000000000,
m Exponent
E = 13
Bias = 127
exp = 140 = 10001100,
= Result:
@llOOOllOOl|10000001110010000000000|
s exp frac

Autumn 2012 Floating Point Numbers 15

University of Washington

How do we do operations?

m Is representation exact?
m How are the operations carried out?

Autumn 2012 Floating Point Numbers 16

University of Washington

Floating Point Operations: Basic Idea

mx +, y = Round(x + y)
m X * y = Round(x * y)

m Basicidea
= First compute exact result
= Make it fit into desired precision
= Possibly overflow if exponent too large
= Possibly round to fit into frac

Autumn 2012 Floating Point Numbers 17

Floating Point Multiplication
(_1)51 M1 2Er * (_1)52 M2 2E2

m Exact Result: (-1)s M 2F

= Signs: s1/7s2 // xor of s1 and s2
= Significand M: M1 * M2
= Exponent E: E1+E2

m Fixing

= |f M > 2, shift M right, increment E
= |f E out of range, overflow
= Round M to fit frac precision

Autumn 2012 Floating Point Numbers 18

University of Washington

Floating Point Addition

(-1t M1 282 + (-1)2 M2 2F2 Assume E1 > E2

[E1-£2 —

m Exact Result: (-1)s M 2F
[(12m1 |

= Sign s, significand M:

= Result of signed align & add + | (=1)52 M2 |

= ExponentE: E1

[(=1 M |

m Fixing
= |f M > 2, shift M right, increment E
= if M < 1, shift M left k positions, decrement E by k
= Qverflow if E out of range
= Round M to fit frac precision

Autumn 2012 Floating Point Numbers 19

University of Washington

Hmm... if we round at every operation...

Autumn 2012 Floating Point Numbers 20

University of Washington

Mathematical Properties of FP Operations

m Not really associative or distributive due to rounding
m Infinities and NaNs cause issues
m Overflow and infinity

Autumn 2012 Floating Point Numbers

University of Washington

Floating Point in C

m C Guarantees Two Levels
float single precision
double double precision

m Conversions/Casting

® Casting between int, float, and double changes bit representation
" Double/float - int
= Truncates fractional part
= Like rounding toward zero
= Not defined when out of range or NaN: generally sets to TMin
" int > double
= Exact conversion, as long as int has < 53-bit word size
" int - float
= Will round according to rounding mode

Autumn 2012

Floating Point Numbers

University of Washington

Memory Referencing Bug

double fun(int i)
{
volatile double d[1l] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];
}

fun(0) -> 3.14

fun(l) -> 3.14

fun(2) -> 3.1399998664856

fun(3) > 2.00000061035156

fun(4) -> 3.14, then segmentation fault

Explanation: saved state 4
d7 .. d4 3
d3 .. do 2 Locatic.m accessed by
fun (i)
afl] 1
a[o] 0

Autumn 2012 Floating Point Numbers 23

University of Washington

Representing 3.14 as a Double FP Number

m 1073741824 = 0100 0000 0000 0000 0000 0000 0000 0000
= 3.14=11.00100011 1101 0111 0000 1010 000...
m (-1)°M 2f

= S=0 encodedas 0

= M =1.10010001 11101011 1000 0101 000.... (leading 1 left out)
= E=1 encoded as 1024 (with bias)

|s|exp (11) |frac (first 20 bits) |
0 10000000000 1001000111101011 1000

|frac (the other 32 bits) |
0101 0000 ...

Autumn 2012 Floating Point Numbers 24

University of Washington

Memory Referencing Bug (Revisited)

double fun(int i)
{
volatile double d[1l] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];
}

fun(0) -> 3.14

fun(l) -> 3.14

fun(2) -> 3.1399998664856

fun(3) > 2.00000061035156

fun(4) -> 3.14, then segmentation fault

Saved State 4
d7 .. d4 01000000 0000 1001 0001 1110 10111000 3
d3 .. d0 01010000 ... 2 Location
accessed
a[1] 1 | byfun(i)
a[0] 0

Autumn 2012 Floating Point Numbers 25

University of Washington

Memory Referencing Bug (Revisited)

double fun(int i)
{
volatile double d[1l] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];
}

fun(0) —> 3.14
fun(l) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14, then segmentation fault
Saved State 4
d7 .. d4 01000000 00001001 0001 111010111000 3
Location
d3 .. 40 01000000 0000 0000 0000 0000 0000 0000 2
accessed
a[1] 1 | pyfun(i)
0

a[o0]

Autumn 2012 Floating Point Numbers 26

University of Washington

Memory Referencing Bug (Revisited)

double fun(int i)
{
volatile double d[1l] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}
fun(0) -> 3.14
fun(l) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14, then segmentation fault
Saved State 4
d7 .. d4 0100 0000 0000 0000 0000 0000 0000 0000 3
d3 . do 01010000.. p Location
accessed
a[1] 1 | bpyfun(i)
a[0] 0

Autumn 2012 Floating Point Numbers 27

University of Washington

Floating Point and the Programmer

#include <stdio.h>
int main(int argc, char* argv[]) {

float f1

float f2

int i;

for (i=0; i<10; i++) {
£f2 += 1.0/10.0;

}

1.0;
0.0;

printf ("0x%08x 0x%08x\n", *(int*)&fl, *(int*)&f2); $./a.out
printf("£f1 = %10.8£\n", £1); 0x3£800000 0x3£800001
printf("£2 = %$10.8f\n\n", £2); £1 = 1.000000000
£2 = 1.000000119
f1 = 1E30;
f2 = 1E-30; fl == £3? yes
float £3 = f1 + £2;
printf ("fl == £3? %s\n", fl == £3 ? "yes" : "no");

return 0;

Autumn 2012 Floating Point Numbers 28

University of Washington

Summary

m As with integers, floats suffer from the fixed number of bits
available to represent them
= Can get overflow/underflow, just like ints
= Some “simple fractions” have no exact representation
« Eg,0.1
® Can also lose precision, unlike ints
= “Every operation gets a slightly wrong result”

m Mathematically equivalent ways of writing an expression may
compute different results

= Violates associativity/distributivity

m NEVER test floating point values for equality!

Autumn 2012 Floating Point Numbers 33

University of Washington

Additional details

Denormalized values — to get finer precision near zero
Tiny floating point example

Distribution of representable values

Rounding

Autumn 2012 Floating Point Numbers

University of Washington

Denormalized Values

m Condition: exp = 000...0

m Exponent value: E = exp — Bias + 1 (instead of E = exp — Bias)
m Significand coded with implied leading 0: M = 0 . xxx...x,

= XXX..X: bits of frac
m Cases

" exp=000..0,frac=000..0

= Represents value 0

= Note distinct values: +0 and —0 (why?)
" exp=000..0, frac=000..0

= Numbers very close to 0.0

= Lose precision as get smaller

= Equispaced

Autumn 2012 Floating Point Numbers 31

University of Washington

Special Values

m Condition: exp=111...1

m Case:exp=111..1, frac=000..0

= Represents value o (infinity)
= Qperation that overflows
= Both positive and negative

= Eg,1.0/0.0=-1.0/-0.0=+%, 1.0/-0.0=-1.0/0.0=-

m Case: exp=111..1, frac=000..0
= Not-a-Number (NaN)
= Represents case when no numeric value can be determined
= E.g., sqrt(-1), 0 — o0, 00 ¥

Autumn 2012 Floating Point Numbers 32

University of Washington

Visualization: Floating Point Encodings

. . +00
-Normalized | -Denorm : ; :+Denorm; +Normalized |
! 1

| Taln:
/\
-0 +0 IM'

Floating Point Numbers

Autumn 2012

University of Washington

Tiny Floating Point Example

|s|exp |frac|
1 4 3

m 8-bit Floating Point Representation
= the sign bit is in the most significant bit.
= the next four bits are the exponent, with a bias of 7.

= the last three bits are the frac

m Same general form as IEEE Format
" normalized, denormalized
= representation of 0, NaN, infinity

Floating Point Numbers

Autumn 2012

University of Washington

Dynamic Range (Positive Only)
s exp frac E Value
0 0000 00O -6 0
0 0000 001 -6 1/8*1/64 = 1/512 closest to zero
Denormalized 0 0000 010 -6 2/8*1/64 = 2/512
numbers
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512 largest denorm
0 0001 000 -6 8/8*1/64 = 8/512 smallest norm
0 0001 001 -6 9/8*1/64 = 9/512
0 0110 110 -1 14/8*1/2 = 14/16
. 0 0110 111 -1 15/8*%1/2 = 15/16 closestto 1 below
NEIEIRGEL) gaesl aow 8/8x1 =1
numbers 0 0111 001 0 9/8*%1 = 9/8 closest to 1 above
0 0111 o010 0 10/8*1 = 10/8
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240 largest norm
0 1111 000 n/a inf
Autumn 2012 Floating Point Numbers 35

University of Washington

Distribution of Values

m 6-bit IEEE-like format
= e =3 exponent bits | S | exp | frac |
= f=2 fraction bits 1 3 2
= Biasis231-1=3

m Notice how the distribution gets denser toward zero.

A A A A A A A AAAAMMMEIRMMA AL A A A A A — A —A—A

-15 -10 -5 0 5 10 15
¢ Denormalized A Normalized Infinity

Autumn 2012 Floating Point Numbers 36

University of Washington

Distribution of Values (close-up view)

m 6-bit IEEE-like format
= e =3 exponent bits
» f=2 fraction bits 1 3 2
= Biasis 3

|s|exp |frac|

— et
-1 -0.5 0 0.5 1
¢ Denormalized A Normalized @ Infinity\

Autumn 2012 Floating Point Numbers 37

University of Washington

Interesting Numbers {single,double}
Description exp frac Numeric Value

m Zero 00..00 00...00 0.0

m Smallest Pos. Denorm. 00..00 00...01 2 123,52} % - {126,1022}

= Single=1.4* 10
= Double =~4.9 * 10-3%
m Largest Denormalized 00..00 11..11 (1.0 —¢) * 2~ {126,202}
" Single~1.18 * 10738
= Double ~2.2 * 107308

m Smallest Pos. Norm. 00..01 00...00 1.0 * 2- {126,022}
= Just larger than largest denormalized
m One 01..11 00...00 1.0
m Largest Normalized 11..10 11..11 (2.0 — g) * 211271023}

" Single ~ 3.4 * 1038
" Double ~1.8 * 10308

Autumn 2012 Floating Point Numbers 38

University of Washington

Special Properties of Encoding

m Floating point zero (0*) exactly the same bits as integer zero
= All bits =0

m Can (Almost) Use Unsigned Integer Comparison
® Must first compare sign bits
® Must consider0-=0"=0
®= NaNs problematic
= Will be greater than any other values
= What should comparison yield?
= Otherwise OK
= Denorm vs. normalized
= Normalized vs. infinity

Autumn 2012 Floating Point Numbers 39

Rounding

m Rounding Modes (illustrate with $ rounding)

$1.40 $1.60 $1.50 $2.50 -$1.50

= Towards zero S1 S1 S1 S2 -$1
= Round down (-) S1 S1 S1 S2 -S2
= Round up (+) S2 S2 S2 S3 -S1
= Nearest (default) S1 S2 S2 S2 -S2

m What are the advantages of the modes?

Autumn 2012 Floating Point Numbers 40

University of Washington

Closer Look at Round-To-Nearest

m Default Rounding Mode
® Hard to get any other kind without dropping into assembly
= All others are statistically biased

= Sum of set of positive numbers will consistently be over- or under-
estimated

m Applying to Other Decimal Places / Bit Positions

= When exactly halfway between two possible values
= Round so that least significant digit is even

® E.g., round to nearest hundredth
1.2349999 1.23
1.2350001 1.24
1.2350000 1.24
1.2450000 1.24

(Less than half way)
(Greater than half way)
(Half way—round up)
(Half way—round down)

Floating Point Numbers a1

Autumn 2012

University of Washington

Rounding Binary Numbers

m Binary Fractional Numbers
= “Half way” when bits to right of rounding position=100...,

m Examples
= Round to nearest 1/4 (2 bits right of binary point)

Autumn 2012

Floating Point Numbers

Value Binary Rounded Action Rounded Value
23/32 10.00011, 10.00, (<1/2—down) 2

23/16 10.00110, 10.01, (>1/2—up) 21/4

27/8 10.11100, 11.00, (1/2—up) 3

25/8 10.10100, 10.10, (1/2—down) 21/2

a2

