Today's Topics

- Floating Point Numbers
- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Autumn 2012

Floating Point Number

University of Washingto

Fractional binary numbers

What is 1011.101?

Autumn 2012

Fractional Binary Numbers

- Representation
 - Bits to right of "binary point" represent fractional powers of 2
 - Represents rational number: $\sum_{k=-j}^{i} b_k \cdot 2^{j}$

Autumn 2012

Floating Point Number

University of Wash

Fractional Binary Numbers: Examples

■ Value Representation

- 5 and 3/4
 2 and 7/8
 63/64
 101.11₂
 10.111₂
 0.111111₂
- Observations
 - Divide by 2 by shifting right
 - Multiply by 2 by shifting left
 - Numbers of the form **0.111111**...₂ are just below 1.0

■
$$1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$$

• Use notation $1.0 - \varepsilon$

Autumn 2012

Representable Numbers

- Limitation
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations
- Value Representation
 - **1/3** 0.01010101[01]...₂
 - **1/5** 0.001100110011[0011]...₂
 - 1/10 0.0001100110011[0011]...₂

nn 2012 Floating Poin

Iniversity of Was

Fixed Point Representation

- float → 32 bits; double → 64 bits
- We might try representing fractional binary numbers by picking a fixed place for an implied binary point
 - "fixed point binary numbers"
- Let's do that, using 8 bit floating point numbers as an example
 - #1: the binary point is between bits 2 and 3 b₇ b₆ b₅ b₄ b₃ [.] b₂ b₁ b₀
 - #2: the binary point is between bits 4 and 5 b₇ b₆ b₅ [.] b₄ b₃ b₂ b₁ b₀
 - The position of the binary point affects the range and precision
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers

utumn 2012

Fixed Point Pros and Cons

Pros

- It's simple. The same hardware that does integer arithmetic can do fixed point arithmetic
 - In fact, the programmer can use ints with an implicit fixed point
 - E.g., int balance; // number of pennies in the account
 - ints are just fixed point numbers with the binary point to the right of b₀

Cons

- There is no good way to pick where the fixed point should be
 - Sometimes you need range, sometimes you need precision
 - The more you have of one, the less of the other

mn 2012 Floating Point Numbers

Jniversity of Washington

What else could we do?

Autumn 2012

IEEE Floating Point

- Fixing fixed point: analogous to scientific notation
 - Not 12000000 but 1.2 x 10⁷; not 0.0000012 but 1.2 x 10⁻⁶
- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Autumn 201

Floating Point Number

Jniversity of Washi

Floating Point Representation

Numerical Form:

- Sign bit s determines whether number is negative or positive
- Significand (mantissa) M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
 - MSB s is sign bit s
 - frac field encodes M (but is not equal to M)
 - exp field encodes E (but is not equal to E)

s exp frac

Autumn 2012

Floating Point Numbers

Normalization and Special Values

- "Normalized" means mantissa has form 1.xxxxx
 - 0.011 x 2⁵ and 1.1 x 2³ represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, don't bother to store it
- How do we represent 0.0? How about 1.0/0.0?

Autumn 2012

Normalization and Special Values

- "Normalized" means mantissa has form 1.xxxxx
 - 0.011 x 2⁵ and 1.1 x 2³ represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, don't bother to store it
- Special values:
 - The float value 00...0 represents zero
 - If the exp == 11...1 and the mantissa == 00...0, it represents ∞
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -1.0/0.0 = -\infty$
- If the exp == 11...1 and the mantissa != 00...0, it represents NaN
 - "Not a Number"
 - Results from operations with undefined result
 - E.g., $\operatorname{sqrt}(-1)$, $\infty \infty$, $\infty * 0$

Autumn 2012

Floating Point Numbe

University of Wa

Normalized Values

- Condition: $exp \neq 000...0$ and $exp \neq 111...1$
- Exponent coded as *biased* value: *exp* = *E* + *Bias*
 - **exp** is an unsigned value ranging from 1 to 2^e-2
 - Allows negative values for E (= exp Bias)
 - Bias = 2^{e-1} 1, where e is number of exponent bits (bits in exp)
 - Single precision: 127 (exp: 1...254, E: -126...127)
 - Double precision: 1023 (*exp*: 1...2046, *E*: -1022...1023)
- Significand coded with implied leading 1: $M = 1 \cdot xxx...x_2$
 - xxx...x: bits of frac
 - Minimum when 000...0 (M = 1.0)
 - Maximum when **111...1** ($M = 2.0 \varepsilon$)
 - Get extra leading bit for "free"

Autumn 2012

Floating Point Numbers

Normalized Encoding Example

```
■ Value: Float F = 12345.0;

■ 12345<sub>10</sub> = 11000000111001<sub>2</sub>

= 1.1000000111001<sub>2</sub> x 2<sup>13</sup>
```

Significand

```
M = 1.100000111001_2
frac= 10000001110010000000000000002
```

Exponent

```
E = 13

Bias = 127

exp = 140 = 10001100_2
```

Result:

0 10001100 10000001110010000000000

exp fra

Autumn 2012

Floating Point Numbers

University of Washington

How do we do operations?

- Is representation exact?
- How are the operations carried out?

Autumn 2012

Floating Point Operations: Basic Idea

- $\mathbf{x} +_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} + \mathbf{y})$
- $\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$
- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Autumn 2012

Floating Point Number

University of Wa

Floating Point Multiplication

(-1)s1 M1 2E1 * (-1)s2 M2 2E2

- Exact Result: (-1)^s M 2^E
 - Sign s: s1 ^ s2 // xor of s1 and s2
 - Significand M: M1 * M2Exponent E: E1 + E2
- Fixing
 - If M ≥ 2, shift M right, increment E
 - If E out of range, overflow
 - Round M to fit frac precision

nn 2012 Floating Point Numbe

Hmm... if we round at every operation...

Autumn 201

Mathematical Properties of FP Operations

- Not really associative or distributive due to rounding
- Infinities and NaNs cause issues
- Overflow and infinity

tumn 2012

Floating Point Numbers

Floating Point in C

C Guarantees Two Levels

float single precision double double precision

- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - Double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: generally sets to TMin
 - int → double
 - Exact conversion, as long as int has ≤ 53-bit word size
 - int → float
 - Will round according to rounding mode

nn 2012

Memory Referencing Bug

```
double fun(int i)
  volatile double d[1] = \{3.14\};
  volatile long int a[2];
  a[i] = 1073741824; /* Possibly out of bounds */
  return d[0];
fun(0) ->
                3.14
fun(1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.0000061035156
fun(4) -> 3.14, then segmentation fault
Explanation:
                 Saved State
                                 4
                                  3
                 d7 ... d4
                                       Location accessed by
                                  2
                 d3 ... d0
                                       fun(i)
                                  1
                 a[1]
                 a[0]
                                  0 .
```

University of Washin

Representing 3.14 as a Double FP Number

- **3.14 = 11.0010 0011 1101 0111 0000 1010 000...**
- (-1)^s M 2^E
 - \blacksquare S = 0 encoded as 0
 - M = 1.1001 0001 1110 1011 1000 0101 000.... (leading 1 left out)
 - E = 1 encoded as 1024 (with bias)

```
s exp (11) frac (first 20 bits)
0 100 0000 0000 1001 0001 1110 1011 1000

frac (the other 32 bits)
0101 0000 ...
```

tumn 2012 Floating Point Numbers

```
Memory Referencing Bug (Revisited)
      double fun(int i)
        volatile double d[1] = \{3.14\};
        volatile long int a[2];
        a[i] = 1073741824; /* Possibly out of bounds */
        return d[0];
      fun(0) ->
                     3.14
      fun(1) ->
fun(2) ->
                     3.14
                    3.1399998664856
      fun(3) ->
                    2.00000061035156
      fun(4) -> 3.14, then segmentation fault
      Saved State
                                                          4
           d7 ... d4 0100 0000 0000 1001 0001 1110 1011 1000
                                                         3
                                                               Location
           d3 ... d0 0101 0000 ...
                                                               accessed
              a[1]
                                                          1
                                                               by fun(i)
              a[0]
                                                          0.
Autumn 2012
                                Floating Point Numbers
```

Memory Referencing Bug (Revisited) double fun(int i) volatile double d[1] = {3.14}; volatile long int a[2]; a[i] = 1073741824; /* Possibly out of bounds */ return d[0]; fun(0) -> 3.14 fun(1) -> fun(2) -> fun(3) -> 3.14 3.1399998664856 2.00000061035156 $fun(4) \rightarrow 3.14$, then segmentation fault Saved State 4 d7 ... d4 0100 0000 0000 1001 0001 1110 1011 1000 3 Location accessed a[1] by fun(i) 0. a[0]

Memory Referencing Bug (Revisited)

```
double fun(int i)
 volatile double d[1] = \{3.14\};
  volatile long int a[2];
  a[i] = 1073741824; /* Possibly out of bounds */
  return d[0];
fun(0) ->
             3.14
fun(1) ->
fun(2) ->
            3.14
3.1399998664856
fun(3) ->
            2.00000061035156
fun(4) ->
          3.14, then segmentation fault
Saved State
                                              4
    3
                                                  Location
    d3 ... d0 0101 0000 ...
                                                   accessed
       a[1]
                                              1
                                                   by fun(i)
       a[0]
                                              0 .
```

Floating Point Numbers

University of Washington

Floating Point and the Programmer

Autumn 2012

```
#include <stdio.h>
int main(int argc, char* argv[]) {
 float f1 = 1.0;
 float f2 = 0.0;
 int i;
 for ( i=0; i<10; i++ ) {
   f2 += 1.0/10.0;
 printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
                                                        0x3f800000 0x3f800001
 printf("f1 = %10.8f\n", f1);
                                                        f1 = 1.000000000
 printf("f2 = %10.8f\n\n", f2);
                                                        f2 = 1.000000119
 f1 = 1E30;
                                                        f1 == f3? yes
 float f3 = f1 + f2;
 printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );
 return 0;
```

Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some "simple fractions" have no exact representation
 - E.g., 0.1
 - Can also lose precision, unlike ints
 - "Every operation gets a slightly wrong result"
- Mathematically equivalent ways of writing an expression may compute different results
 - Violates associativity/distributivity
- NEVER test floating point values for equality!

utumn 2012 Floating Point Numbers 2

University of Washin

Additional details

- Denormalized values to get finer precision near zero
- Tiny floating point example
- Distribution of representable values
- Rounding

mn 2012 Floating Point Numbers

Denormalized Values

- **■** Condition: **exp** = **000...0**
- Exponent value: E = exp Bias + 1 (instead of E = exp Bias)
- Significand coded with implied leading 0: $M = 0 . xxx...x_2$
 - * xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents value 0
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, $frac \neq 000...0$
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced

Autumn 2012

Floating Point Numbers

University of Was

Special Values

- **■** Condition: **exp** = **111...1**
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -1.0/0.0 = -\infty$
- Case: exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty * 0$

Autumn 2012

Floating Point Numbers

Visualization: Floating Point Encodings

Autumn 2012

loating Point Number

University of Washingt

Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

Autumn 2012

Floating Point Numbers

Distribution of Values (close-up view)

■ 6-bit IEEE-like format

■ e = 3 exponent bits
■ f = 2 fraction bits
■ Bias is 3

■ -0.5
■ Denormalized ■ Normalized ■ Infinity

Interesting Numbers {single,double} Description **Numeric Value** frac exp 00...00 00...00 Zero $2^{-\{23,52\}} * 2^{-\{126,1022\}}$ ■ Smallest Pos. Denorm. 00...00 00...01 ■ Single $\approx 1.4 * 10^{-45}$ ■ Double $\approx 4.9 * 10^{-324}$ $(1.0 - \varepsilon) * 2^{-\{126,1022\}}$ ■ Largest Denormalized 00...00 11...11 ■ Single $\approx 1.18 * 10^{-38}$ ■ Double $\approx 2.2 * 10^{-308}$ 1.0 * 2- {126,1022} ■ Smallest Pos. Norm. 00...01 00...00 Just larger than largest denormalized One 01...11 00...00 1.0 $(2.0 - \varepsilon) * 2^{\{127,1023\}}$ Largest Normalized 11...10 11...11 ■ Single $\approx 3.4 * 10^{38}$ ■ Double $\approx 1.8 * 10^{308}$

Special Properties of Encoding

- Floating point zero (0+) exactly the same bits as integer zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^- = 0^+ = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Autumn 2012

Floating Point Number

Rounding

■ Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	-\$1
Round down (-∞)	\$1	\$1	\$1	\$2	- \$2
Round up (+∞)	\$2	\$2	\$2	\$3	-\$1
Nearest (default)	\$1	\$2	\$2	\$2	- \$2

■ What are the advantages of the modes?

umn 2012 Floating Point Numbers

Closer Look at Round-To-Nearest

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

```
1.2349999 1.23 (Less than half way)
1.2350001 1.24 (Greater than half way)
1.2350000 1.24 (Half way—round up)
1.2450000 1.24 (Half way—round down)
```

iutumn 2012

Floating Point Numbers

University of Washin

Rounding Binary Numbers

Binary Fractional Numbers

■ "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

```
Value
         Binary
                     Rounded
                                                Rounded Value
                                Action
         10.00<mark>011</mark>2 10.002
2 3/32
                                (<1/2—down)
                                                2
2 3/16
         10.00<mark>110</mark>2 10.012
                                (>1/2—up)
                                                2 1/4
2 7/8
         10.11100_2 11.00_2 ( 1/2—up)
                                                3
         10.10100, 10.10, (1/2-down)
2 5/8
                                                2 1/2
```

mn 2012