
CSE351 Autumn 2012 – Final Exam (12 Dec 2012)

Please read through the entire examination first! We designed this exam so that it can be
completed in 90 minutes and, hopefully, this estimate will prove to be reasonable.

There are 5 problems for a total of 200 points. The point value of each problem is
indicated in the table below and at every part of every problem. Write your answer neatly
in the spaces provided. If you need more space (you shouldn't), you can write on the
back of the sheet where the question is posed, but please make sure that you indicate
clearly the problem to which the comments apply. Do NOT use any other paper to hand
in your answers. If you have difficulty with part of a problem, move on to the next one.
They are independent of each other.

The exam is CLOSED book and CLOSED notes. Please do not ask or provide anything
to anyone else in the class during the exam. Make sure to ask clarification questions
early so that both you and the others may benefit as much as possible from the answers.

Name: ______Sample Solution____

ID#: ________________________

Problem Max Score Score
1 (Appetizer) 25 25

2 (Soup/Salad) 35 35
3 (Entrée 1) 60 60
4 (Entrée 2) 40 40
5 (Dessert) 40 40

TOTAL 200 200

1. Appetizer (Short Answers) – 25pts total (5pts each)

A. What is cached in the data portion of a TLB (translation-lookaside buffer) line in
a virtual memory system? (check all that apply)

þ A page location in physical memory

☐ A page location in virtual memory

☐ A page location on disk

☐ None of the above

B. Why are virtual memory pages so much bigger than memory cache blocks?

(check one)

☐ There is no special reason – that is just how it is

þ Getting a virtual memory from disk is slow – get more data to save time

☐ Memory cache blocks are smaller because we only access one word at a time

C. When we need more memory on the dynamic heap, why not just double the heap

size each time? (check all that apply)

þ It would lead to low memory utilization

þ The heap may be constrained by other elements in memory such as the stack

☐ Virtual memory may not have enough pages

☐ It will lead to worse cache performance

D. Which of the following is guaranteed to lead to a virtual memory page fault?

(check all that apply)

☐ A TLB miss

☐ A page table entry pointing to a physical memory location

þ A page table entry pointing to a disk location

E. When starting a new process via a fork, which of the following happens? (check

all that apply)

þ Child process is given an exact copy of the parent memory when it starts

☐ The TLB is pre-filled with the page table entries for the child process

☐ The physical memory cache is flushed so it starts fresh for the child process

2. Soup or Salad (Cache Memory) – 35 pts total (5/A, 5/B, 15/C, 10/D)

Suppose we have a system with the following properties:

• Memory accesses are to 4-byte words
• Addresses are 12 bits wide
• The cache is two-way set associative, with a 8-byte block size and 4 sets
• A cache hit has 10ns latency and a cache miss has 100ns latency

A. What is the size of the cache in bytes? ____64 bytes ____

B. Fill in which bits are used for the byte offset (CO), set index (CI), and cache tag (CT)

CT CT CT CT CT CT CT CI CI CO CO CO

C. The following code is run on this machine:

int arr[4][4], i, j;
for (i = 0; i < 4; i++) {
 for (j = 0; j < 4; j++) {
 arr[j][i] = i * j;
 }
}

Assume the following:
• i and j are stored in registers
• sizeof(int) = 4 bytes
• arr is stored in row-major order starting at 0x00000000 in memory
• The cache is initially empty

Number of cache hits: ____8 ____

Number of cache misses: ____8 ____

Total latency: ____880 ns ____

D. The program above iterates through the array columns rather than the rows. If
arr[j][i] is changed to arr[i][j] so that it iterates through the rows, will
there be a performance increase? If so, how much?

Same miss rate as before, because in both cases nothing is ever evicted from the
cache. No performance increase or decrease.

3. Entrée 1 (Heap Data Structures) – 60pts total (10/A, 20/B, 10/C, 20/D)

Address . Data .
0x a188 abababab abababab
0x a180 abababab abababab
0x a178 abababab abababab
0x a170 abababab abababab
0x a168 abababab abababab
0x a160 abababab abababab
0x a158 abababab abababab
0x a150 41000000 00000000
0x a148 42000000 00000000
0x a140 abababab abababab
0x a138 abababab abababab
0x a130 abababab abababab
0x a128 abababab abababab
0x a120 20a00000 00000000
0x a118 90a10000 00000000
0x a110 42000000 00000000
0x a108 abababab abababab
0x a100 abababab abababab
0x a0f8 abababab abababab
0x a0f0 abababab abababab
0x a0e8 abababab abababab
0x a0e0 33000000 00000000
0x a0d8 abababab abababab
0x a0d0 abababab abababab
0x a0c8 abababab abababab
0x a0c0 21000000 00000000
0x a0b8 a2000000 00000000
0x a0b0 abababab abababab
0x a0a8 abababab abababab
0x a0a0 abababab abababab
0x a098 abababab abababab
0x a090 abababab abababab
0x a088 abababab abababab
0x a080 abababab abababab
0x a078 abababab abababab
0x a070 abababab abababab
0x a068 abababab abababab
0x a060 abababab abababab
0x a058 abababab abababab
0x a050 abababab abababab
0x a048 abababab abababab
0x a040 abababab abababab
0x a038 abababab abababab
0x a030 10990000 00000000
0x a028 10a10000 00000000
0x a020 a2000000 00000000
0x a018 23000000 00000000
0x a010 10990000 00000000
0x a008 20a00000 00000000
0x a000 23000000 00000000

After a hard night of 351 studying, you
dream that you are stuck in a malicious
little-endian 64-bit computer system. You
run to escape via the nearest I/O port,
fighting off guards in a light cycle race.
You dig into the code that controls the port
and find part of the heap for the currently
running program. If you change the right
bits, you can allocate enough heap space to
run a password cracking subroutine and
escape from your terrible dream. However,
if you corrupt the heap, the program may
crash, trapping you inside forever!

You may draw/mark/use the heap memory
dump (on the left) as you wish. You can
assume an explicit free list as in your last
assignment. Note that memory contents
are little-endian.

The used-flags are also the same as the
assignment; in the size of a block, the 2^0
bit is set if the current block is allocated
and the 2^1 bit is set if the previous block
is allocated.

You will need this memory map for
reference as you work out the problem on
the next page.

Recall that blocks are defined as follows:

struct BlockInfo {

size_t sizeAndTags;
BlockInfo* next;
BlockInfo* prev;

}

A. You notice that a call to the malloc routine just returned the address 0xa008. Describe
the block that was just allocated:

Start address of payload: 0x ___a008__

Start address of block: 0x ___a000__

Size of block: ___ __ 32___ bytes (in decimal)

B. The dump of memory shown on the previous page is just after that block was
allocated (free list pointers have yet to be overwritten). Describe the free list, starting
from the block that was just allocated:

Start of next free block: 0x ___a020__

Size of next free block: ___ __ 160___ bytes (in decimal)

Start of next next free block: 0x ___a110__

Size of next next free block: ___ __ _64__ bytes (in decimal)

C. Your password-cracking subroutine needs 144 bytes of heap space. Assume no other

malloc() calls are made while you modified the memory. Find a free block that is
large enough to hold the 144 bytes. What are some properties of this block?

Address of the block: 0x ___a020__

Size of the block: ___ __ 160___ bytes (in decimal)

Bytes of internal fragmentation: ___ __ __8__ bytes (in decimal)

D. What steps do you need take to allocate this block for your escape? Do not worry
about splitting the block and placing the part you don’t need on the free list.
However, please state the reason for each step right above the address and value.
You are given Step 1 as an example. Write new values as they would appear in the
memory map at the start of this problem – in little-endian. You are given room for up
to 6 steps, but you may NOT need all of them – just use as many as needed.

Address to change (hex). Value to write to that address (hex, little-endian).

Step 1: Change the block’s header to mark it allocated .

0x ____a020____ 0x __a3000000__

Step 2: Mark the block as allocated in next contiguous block .

0x ____a0c0____ 0x __23000000__

Step 3: Set free list next.prev = prev .

0x ____a120____ 0x __10990000__

Step 4: Set free list prev.next = next .

0x ____9918____ 0x __10a10000__

Step 5: .

0x ____________ 0x ____________

Step 6: .

0x ____________ 0x ____________

4. Entrée 2 (Virtual Memory) – 40pts total (15/A, 10/B, 5/C, 5/D, 5/E)

Answer the following questions with a couple of sentences.

A. List two reasons why we have virtual memory in modern computer systems.

Efficient use of limited main memory (RAM)
• Use RAM as a cache for the parts of a virtual address space
• Keep only active areas of virtual address space in memory
Simplifies memory management for programmers
• Each process gets the same full, private linear address space
Isolates address spaces
• One process can’t interfere with another’s memory
• User process cannot access privileged information

B. What is indirection and what role does it have in allowing programs to refer to
virtual memory instead of physical memory?

Indirection is the ability to reference something using a name, reference, or
container instead the value itself. A flexible mapping between a name and a thing
allows changing the thing without notifying holders of the name. By adding a
level of indirection between virtual memory and physical memory we allow a
process to believe it has access to all of virtual memory while in reality it only has
temporary use of a small part of the actual physical memory.

C. When does a TLB (Translation Lookaside Buffer) miss occur? What is the
difference between a TLB miss and a page fault?

A TLB miss occurs if the VPN is not in the TLB or if the valid bit is not set. Since
the TLB only holds a small amount of the actual VPNs, the next step would be to
actually look in the page table for the corresponding PPN. If the PPN turns out to
be a disk location, then a page fault occurs. This means that a while a TLB hit
always implies no page fault, a TLB miss does not mean a page fault will occur.

D. In a virtual memory system with 64-bit virtual addresses and 256T page table
entries (1T = 240), how big are memory pages (in bytes)?

256 = 28, 1T = 240 à 256T = 28+40
64 (address bits) – 48 (tag bits) = 16 (page offset bits)

216 page sizes or 210+6 = 26 KB = 64KB per page

E. If for the same system as in (D), physical memory has 32-bit physical addresses,
determine the number of bits in the VPN (virtual page number), VPO (virtual
page offset), PPN (physical page number), and PPO (physical page offset).

VPO and PPO = 16 bits. (offset into page is the same)
VPN = 64 – 16 = 48 bits.
PPN = 32 – 16 = 16 bits.

5. Dessert (Pointers in C) – 40pts total (A/10, B/10, C/10, D/10)

You are given the following definitions for some graphics code:

struct pixel {

char r;
char g;
char b;

};

pixel buffer[480][640];

struct color {

char r;
char g;
char b;

}

The following code snippets appear in the program you have been given to analyze.
Write a comment block for each one of these C functions describing its parameters and
return value as well as each assignment and type cast used in the body.

pixel *getPixel (int i, int j) {

return &buffer[i][j];
}

void changeBufferToColorOfPixel(pixel * chosenPixel) {

color newcolor = (color) *chosenPixel;
changeToColor(&newcolor);

}

void changeToColor (color * newcolor) {

pixel newpixel = (pixel) *newcolor;
int i, j;
for (i = 0; i<480; i++) {

for (j = 0; j < 640; j++) {
buffer[i][j] = newpixel;

}
}

}

A. getPixel

Given two integer indices i and j, it returns a pointer to a pixel struct in the i-th
row and j-th column of the array buffer.

B. changeBufferToColorOfPixel

Given a pointer to a pixel, it casts the struct to a color and then calls
changeToColor with a pointer to this new color struct.

C. changeToColor

Given a pointer to a color, it casts the struct to a pixel and then goes through the
entire array copying this new pixel struct into every pixel element of the array.

D. In their respective functions, where are newcolor and newpixel allocated in
memory?

The two structs, newcolor and newpixel, are allocated on the stack (or register) in
their respect functions as they are not needed outside those functions.

