
Supporting Class / C++
Lecture Notes

Goal

You started with an understanding of how to write Java programs.  This course is about explaining the 
path from Java to executing programs.  We proceeded in a mostly bottom-up manner: we started down 
at the hardware, and have worked out way up through compiling, linking, and executing C programs.

C is at least one step away from Java. One of the major distinctions is that Java supports classes, while 
C does not.

Our goal in this section is understand how classes are supported.  Instead of stepping all the way to 
Java, we're stepping only to C++.  C++ is basically C + classes.  (Java is C + classes + some other 
things, e.g., memory safety.)

Preliminaries

We assume as background an understanding of how C programs are compiled and linked.  That 
material is covered in the book (as well as in lectures).

The goal of this material is to look at how to compile programs written in languages that support 
classes and inheritance.  We're most interested in things that are different than when compiling C.

There are three players in the implementation: the compiler, the linker, and the runtime system (a set of 
functions loaded with the code you wrote that support its basic operation).  They work together to 
implement execution of your code.

“Static” means done without actually running the code.  “Dynamic” means done while running the 
code.  The primary distinction between the two is that dynamic has access to the particular path through 
the code that has been followed (for example, what code called the method we're currently executing), 
while static doesn't.  Reading a code file is a kind of static analysis of it.  Running the debugger on your 
code, setting a breakpoint, and examining variable values while at the breakpoint is an example of 
dynamic analysis.

We prefer to implement a language feature (e.g., classes) statically, rather than dynamically.  That's 
more efficient, because we compile once (ideally), but we run the program repeatedly.  Not everything 
can be determined statically, though, as we'll see.  Those things that can't be determined statically must 
be implemented, at least in part, by code that runs with your code, i.e., dynamically.  (We've already 
seen this distinction in compiling C.  Simple statements can be turned into machine code rather directly. 
Code for subroutines must follow a subroutine call convention – that is, there is a bunch of code that 
supports subroutine call/return.  That code is injected directly into the caller and called methods, but we 
can think of it as runtime support for the procedure call language feature.)

I'll be using the code samples from these lectures, without retyping that code here:

http://www.cs.washington.edu/education/courses/cse351/11wi/lectures/cppExample.pdf

http://www.cs.washington.edu/education/courses/cse351/11wi/lectures/cppExample.tar.gz

Finally, you should think of the information here as giving you the essential idea of how classes are 
implemented. The details of how to implement is left to each individual compiler, and so there's no 
“one right way.”  Additionally, there are many (many) details that an actual compiler has to be 

http://www.cs.washington.edu/education/courses/cse351/11wi/lectures/cppExample.pdf
http://www.cs.washington.edu/education/courses/cse351/11wi/lectures/cppExample.tar.gz


concerned with, but just get in the way here, and so aren't considered.

Naming

C defines rules about the scopes of names – where in the code you can use the name.  C++ has similar 
scoping rules.  In addition, C++ introduces the notions of private, protected, and public, which are just 
like those ideas in Java.  Enforcement of them is done statically in C++.  When some code 
implementing class foo tries to access a private instance variable of an object of class bar, the compiler 
raises an error.  It should be easy to see that the compiler has enough information at compile time to 
reliably apply scope rules.

Unlike C, though, the names in a C++ program form a hierarchical name space (as they do in Java). 
foo::read() is different from bar::read(), for instance, meaning that the name 'read' may not 
uniquely name anything.  This is unlike C, where there is a flat, global name space, and the language 
allows only a single instance of any name to exist.  (You can have only one method named read() in 
C.)

Making matters worse, C++ allows polymorphic functions.  For instance, there may be a method of 
class foo with type signature int read() and another with signature int read(char* fName).  So, 
even the name foo::read isn't guaranteed to be unique.

A final complication is that these names have to be given to the linker, so that it can perform final 
linking of the code.  Depending on the linker implementation, it may support only a flat name space 
(not a hierarchical one).

To resolve all these issues, the hierarchical names in C++ are “mangled” to form flat names.  As one 
example, taken from the code sample given for these lectures, the method int read() in class 
Polynomial has mangled name _ZN10Polynomial4readEv.  Clearly the simple class and method 
names form part of the mangled name.  The additional characters encode things like the types of 
arguments, so that two different Polynomial::read functions (which is allowed by the language so 
long as the type signatures are sufficiently distinct) have distinct mangled names.

Implementing Objects: Simple Classes

Have a look at Vector.h, which defines the Vector class.  It shouldn't be much of a stretch to see that 
the state of an object of type Vector can be represented by a struct whose fields correspond to the 
instance variables of the Vector class1:

typedef struct {
int capacity;
int length;
double* pVec;

} VectorStruct;

Creating an object of type Vector (e.g., pVec = new Vector();) is now doing 

pVec = (VectorStruct*)malloc(sizeof(VectorStruct));
      pVec->Vector();  // invoke the constructor code on the newly allocated space

That second line brings up the small point of how what “invoking a method on an object means,” in 
terms of assembler/hardware instructions.  The hardware doesn't support the notion of object, just of 
procedure. 

1 None of the “code” in this wrteup is guaranteed to actually compile.  C++ sometimes/often requires syntax whose 
inclusion won't make anything clearer, so I'm not trying to be faithful to its demands.



The way it's done is to make the pointer to the object an implied first argument to all class methods, so 
that method invocation on an object becomes just procedure invocation where “the object” is an 
argument.  The actual invocation of the constructor would therefore be something like this2:

Vector(pVec);
You write pVec->Vector() in C++, because that syntax expresses the object-y idea, but at execution 
the pointer to the object (struct) is just an argument to the procedure code.

Making the object reference the first argument works because the compiler does that uniformly – it 
does it when compiling invocations, and it does it when compiling the code for the method.  There's no 
question of whether the object reference has been included as the first argument for any particular call, 
because the compiler makes sure it always is.  Similarly, there's no question if the method's code 
expects an object reference as the first argument, because the compiler makes sure it always does.  It's 
therefore possible, and correct, to compile the invocations even when you can't see the method's code 
(because they're in some other file), and to compile the method even when you can't see the calling 
code.

Note, by the way, that if someone forces you to use C, which doesn't have classes, you  
can (and maybe should) adopt a style that mimics the above, to make C more object-y:  
you explicitly make the first argument of a set of methods a reference to a struct, and put  
all those methods in a single file (with a name like Vector.c).  Voila, a Vector class in C,  
sort of.

Now suppose some code does something like this:

int x = pVec->capacity;

If that line of code isn't in a method that implements the Vector class, the compiler raises an error, 
because capacity is a private instance variable.  (Note that the compiler always has enough information 
to determine this at compile time.)  If that line is legal in the language, then it is compiled using the 
understanding that pVec points at a struct, and that field capacity is at offset 0 in that struct.  (At the 
hardware level, if pVec is in register 2, we address capacity as $0(r2).)

Implementing Objects: Inheritance and Instance Variables

Suppose we class bar is a subclass of class foo, and the two have instance variables as indicated by the 
partial class definitions below:

class foo {
private:

int x;
public:

int y;
}:
class bar : public foo {

public:
int z;

};

Then the state of an object of type foo is stored in a struct with two fields, x and y.  The state of an 
object of type bar is a struct with three fields, x, y, and z.  The bar struct needs the field x, even 
though it is private to class foo, because an object of type bar can be given to a method expecting a 
foo.  For instance, consider this static method:

2 This is only the first part of what is actually required, in general.  We'll see the second part shortly.  It, on its own, works 
for this invocation though.



int uselessMethod( foo* pF) {
pF->y = 0;

    return 0;
}

If I have a pointer to a bar, say pB, I can invoke uselessMethod(pB).

In general, the struct that holds the state of an object of class C is formed by concatenating all the 
instance variables, starting at the base class and working down through the class hierarchy until 
reaching C.

Using this scheme, it's possible to compile uselessMethod even though we don't know at compile type 
the exact type of the object pF points at.  What we do know is that it's “at least” a foo; it might be some 
subclass of a foo, though.  Because of the concatenation in forming the structs,  the state of every 
subclass object will be represented by a struct whose first elements match the elements in a Foo 
struct.  That means that pF->y always means “4 bytes past the beginning of the struct,” no matter 
what the specific type of the object is that pF points at.  Therefore, the compiler can generate code for 
uselessMethod even though it has no way to know exactly what the type of argument will be.

Summarizing, the state of a foo object is represented by this struct:
struct {

int x;
int y;

}
The state of a bar is represented by this struct:

struct {
int x;
int y;
int z;

}

At some future date, someone might subclass bar, and pass an object of this new subclass to 
uselessMethod.  The states of objects of this future subclass might be saved in a struct like this:

struct {

int x;
int y;
int z;
int a;
int b;

}

The point is, uselessMethod is expecting a foo.  Class foo promises the first two elements of the 
struct (x and y), and nothing more.  Every subclass will have x and y as the first two elements.  They 
might also have more, but uselessMethod doesn't care – all it can operate on are the instance variables 
offered by something of the declared class (foo).  Even if you, the programmer, somehow knew that 
your program always passed a pointer to a bar to uselessMethod, the line pF->z = 2; wouldn't 
compile (if put in uselessMethod), because z isn't an instance variable of type foo.

Implementing Objects: Virtual Method Invocation

Now lets look at the situation for methods in classes.  Using foo and its subclass bar again, suppose we 
have this3:

3 This code actually compiles: g++ example.cpp



#include <stdio.h>
class foo {
   public:

void sfunc() { printf("foo\n"); }
virtual void vfunc()  { printf("foo\n"); }

};
class bar : public foo {
   public:

void sfunc() { printf ("bar\n"); }
void vfunc() { printf ("bar\n"); }
virtual void anotherVfunc(){ printf(“bar\n”); }

};
int main(int argc, char* argv[]) {

bar* pB = new bar();
foo* pF = pB;

pF->vfunc();  // prints 'bar'
pF->sfunc();  // prints 'foo'
pB->sfunc();  // prints 'bar'

return 0;
}

The virtual in the declaration of vfunc() in foo means that subclasses can override the method.  The 
lack of virtual in the declaration of sfunc() means they can't.  In C++, subclasses can still declare a 
method with the same (simple) name, though.

Let's handle invocations of sfunc first.  When compiling calls to it, the compiler sees that it isn't 
declared virtual.  Thus, it uses the declared type of the object it's being invoked on to determine how 
to resolve the name.  In the first call to sfunc() in main, the object is a foo.  So, the compiler starts 
looking in class foo for an sfunc().  It finds one, and so compiles basically this:

_mangledNameFor_foo::sfunc(pF)

In the second call, it does the same thing.  This time it starts at class bar, and finds an appropriate 
sfunc, so compiles basically:

_mangedNameFor_bar::sfunc(pB)

For virtual functions, the situation is more complicated.  The code to be invoked should be the 
implementation of the method closest to the acutal class of the object it's being invoked on.  It isn't 
enough to know the type of the pointer, we need to know what it points at.  Unfortunately, we can't 
know that statically (at compile time).  In the example above, even though pF is of type foo*, the call 
to vfunc() resolves to bar::vfunc(), because pF is pointing at a bar.  (Sure, the compiler could 
figure that out in this case, but it can't always, for instance if a foo* is passed to some method as an 
argument.)  We therefore need a way to dynamically determine which instance of vfunc() should be 
invoked.

The solution to this is the use of vtables.  A vtable is an array of pointers to methods – an array of the 
addresses of the first instructions of some methods.  We construct the vtable by walking the class 
hierarchy from base class to some specific class, concatenating the (newly encountered) virtual 
functions as we go.

The vtable for class foo would look like this:

Pointer to foo::vfunc code



The vtable for class bar would be built by starting at class foo.  Initially, it'd look just like the one 
above.  The compiler would then descend to class bar.  It would find a new definition of vfunc, so 
would replace the entry in the vtable in slot 0.  It would also find a second virtual function, so would 
add it.  The vtable for class bar would look like this:

Pointer to bar::vfunc code

Pointer to bar::anotherVfunc code

Just as with instance variables, this means that once a virtual function is declared in a class, the offset in 
the vtable for that function is the same in every class that includes it (the class where it's originally 
declared plus all subclasses).  That means the compiler can generate correct invocations of virtual 
functions at compile time, when it doesn't know the class of the object, because it does know the offset 
of the function in the vtable.

The final details are these.  The struct representing the object state (for all classes) has a pointer to the 
class's vtable as its first field, so at offset 0. After that follow the instance variables, as described above.

When the compiler sees a call like pF->vfunc(), it knows the offset of vfunc() in the vtable for all 
classes that can be considered an object of class foo, because it's the same for all of them (as can be 
calculated from the information in the #include'd .h files).  It then generates something like this 
pseudo-code:

r2 ← pF[0]   # fetch pointer to vtable from the object's struct
      r2 ← 0(r2)   # fetch pointer to vfunc implementation from the vtable
      call (r2)    # invoke the function
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