
University of Washington

The Hardware/Software Interface
CSE351 Winter 2011

Module 9: Compiler Optimizations

University of Washington

Today

� Context for this material
� Overview of program optimizations

� Removing procedure calls

� Code motion/precomputation

� Strength reduction

� Sharing of common subexpressions

� Impediments to compiler optimization:
� Procedure calls

� Memory aliasing

CSE351 - Autumn 2010 2

University of Washington

Context

� We've looked at the ISA and talked about compiling C

programs to it

� Most of our compilation has been very direct

� As thought a C statement represented a template for machine code

� Implying that the programmer's job is primarily to tell the compiler

what machine code to generate

� It's more complicated than that...

University of Washington

Context (cont.)

� Who are you talking to when you're writing code?

� To the compiler, so it can generate code that can run on the hardware

� This is motivation to write code that runs fast

� To programmers, who have to maintain the code

� This is motivation to write simple, clear code

� Ideally, we can have both...

� You write clear, simple code for other programmers to read

� The compiler transforms your code into something that runs fast

� i.e., optimizes it

University of Washington

Does this work?

� Well...

� The compiler can do a lot, but...

� It can't do everything you might hope for

� It's useful to have some understanding of the kinds of things

it can do

� And can't do

University of Washington

The general sense of what the compiler can/can't do

� It can't do major redesign

� It can't pick an entirely different algorithm

� It can't pick better data structures

� It's good at

� �local� optimizations

� a short sequence of instructions

� a procedure

� bookkeeping � it's better than we are

� E.g., register allocation

University of Washington

Another example � no optimization

int rescaleValue(int val) {
int a = 30;

 int b = 9 - a / 5;
 int c;

 c = b * 4;
 if (c > 10) {
 c = c - 10;
 }
 return val * c * (60 / a);
}

$ gcc -S rescale.c

 pushl %ebp
 movl %esp, %ebp
 subl $16, %esp
 movl $30, -4(%ebp)
 movl -4(%ebp), %ecx
 movl $1717986919, %edx
 movl %ecx, %eax
 imull %edx
 sarl %edx
 movl %ecx, %eax
 sarl $31, %eax
 subl %eax, %edx
 movl $9, %eax
 subl %edx, %eax
 movl %eax, -8(%ebp)
 movl -8(%ebp), %eax
 sall $2, %eax
 movl %eax, -12(%ebp)
 cmpl $10, -12(%ebp)
 jle .L2
 subl $10, -12(%ebp)
.L2:
 movl 8(%ebp), %eax
 movl %eax, %ecx
 imull -12(%ebp), %ecx
 movl $60, %eax
 movl %eax, %edx
 sarl $31, %edx
 idivl -4(%ebp)
 imull %ecx, %eax
 leave
 ret

University of Washington

Limitations of Optimizing Compilers

� If in doubt, the compiler is conservative

� Operate under fundamental constraints
� Must not change program behavior under any possible condition

� Often prevents it from making optimizations when would only affect

behavior under pathological conditions.

� Behavior that may be obvious to the programmer can be

obfuscated by languages and coding styles
� e.g., data ranges may be more limited than variable types suggest

� Most analysis is performed only within procedures
� Whole-program analysis is too expensive in most cases

� Most analysis is based only on static information
� Compiler has difficulty anticipating run-time inputs

9

University of Washington

Example: Data Type for Vectors

/* data structure for vectors */
typedef struct{

int len;
double *data;

} vec;

/* retrieve vector element and store at val */
int get_vec_element(vec *v, int idx, double *val)
{

if (idx < 0 || idx >= v->len)
return 0;

*val = v->data[idx];
return 1;

}

len

data
0 1 len-1

10

University of Washington

Example: Summing Vector Elements

/* sum elements of vector */
double sum_elements(vec *v, double *res)
{
 int i;
 n = v->len;
 *res = 0.0;
 double val;

 for (i = 0; i < n; i++) {
 get_vec_element(v, i, &val);

 *res += val;
 }
 return res;
}

double get_vec_element(vec *v, int idx,
 double *val)
{
 if (idx < 0 || idx >= v->len)

return 0;
 *val = v->data[idx];
 return 1;
}

Overhead for every fp +:
� One fct call
� One <
� One >=
� One ||
� One memory variable

access

Slowdown:

probably 10x or more

Bound check

unnecessary

in sum_elements

Why?

11

University of Washington

Manually Removing Procedure Call

/* sum elements of vector */
double sum_elements(vec *v, double *res)
{
 int i;
 n = v->len;
 *res = 0.0;
 double *data = get_vec_start(v);

 for (i = 0; i < n; i++)

 *res += data[i];
 return res;
}

/* sum elements of vector */
double sum_elements(vec *v, double *res)
{
 int i;
 n = v->len;
 *res = 0.0;
 double val;

 for (i = 0; i < n; i++) {
 get_vec_element(v, i, &val);

 *res += val;
 }
 return res;
}

12

University of Washington

Inlining

13

� Inlining is the notion of inserted the subroutine call into the

call site

� Rather than generate the procedure call convention code (which is

overhead), simply generate the body of the procedure

� Does inlining make code faster?

� It's complicated...

� Eliminates procedure call convention overhead

� May make code larger

� May make code smaller

University of Washington

Compiler Assisted Inlining

� C

� #define get_vec_element(v, idx) (v->data[idx])

� preprocessor rewrites *res += get_vec_element(v,i);

as *res = (v->data[idx])

� Why write the code this way?

� gcc has the -finline-functions switch

� C++

� has inline keyword

� inline int get_vec_element(vector* v, index idx);

University of Washington

void set_row(double *a, double *b,
 long i, long n)
{
 long j;
 for (j = 0; j < n; j++)

a[n*i+j] = b[j];
}

Code Motion

� Reduce frequency with which computation is performed
� If it will always produce same result

� Especially moving code out of loop

� Sometimes also called pre-computation

 int j;
 int ni = n*i;
 for (j = 0; j < n; j++)

a[ni+j] = b[j];

void copy_row(double *a, double *b,
 int i, int n)
{
 int j;
 for (j = 0; j < n; j++)

a[n*i+j] = b[j];
}

15

University of Washington

Compiler-Generated Code Motion

copy_row:
xorl%r8d, %r8d # j = 0
cmpq%rcx, %r8 # j:n
jge .L7 # if >= goto done
movq%rcx, %rax # n
imulq %rdx, %rax # n*i outside of inner loop
leaq(%rdi,%rax,8), %rdx # rowp = A + n*i*8

.L5: # loop:
movq(%rsi,%r8,8), %rax # t = b[j]
incq%r8 # j++
movq%rax, (%rdx) # *rowp = t
addq$8, %rdx # rowp++
cmpq%rcx, %r8 # j:n
jl .L5 # if < goto loop

.L7: # done:
rep ; ret # return

 int j;
 int ni = n*i;
 double *rowp = a+ni;
 for (j = 0; j < n; j++)

{*rowp = b[j]; rowp++;}

void copy_row(double *a, double *b,
 int i, int n)
{
 int j;
 for (j = 0; j < n; j++)

a[n*i+j] = b[j];
}

16

University of Washington

Strength Reduction

for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 a[n*i + j] = b[j];

int ni = 0;
for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++)
 a[ni + j] = b[j];
 ni += n;
}

17

� Replace costly operation with simpler one

� Example: Shift/add instead of multiply or divide
� 16*x � x << 4

� Depends on cost of multiply or divide instruction

� On Pentium IV, integer multiply requires 10 CPU cycles

� Example: Recognize sequence of products

University of Washington

Share Common Subexpressions

¢ Reuse portions of expressions

¢ Compilers often not very sophisticated in exploiting

arithmetic properties

/* Sum neighbors of i,j */
up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;

int inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

3 mults: i*n, (i�1)*n, (i+1)*n 1 mult: i*n

leaq 1(%rsi), %rax # i+1
leaq -1(%rsi), %r8 # i-1
imulq %rcx, %rsi # i*n
imulq %rcx, %rax # (i+1)*n
imulq %rcx, %r8 # (i-1)*n
addq %rdx, %rsi # i*n+j
addq %rdx, %rax # (i+1)*n+j
addq %rdx, %r8 # (i-1)*n+j

imulq %rcx, %rsi # i*n
addq%rdx, %rsi # i*n+j
movq%rsi, %rax # i*n+j
subq%rcx, %rax # i*n+j-n
leaq(%rsi,%rcx), %rcx # i*n+j+n

18

University of Washington

void lower(char *s)
{
 int i;
 for (i = 0; i < strlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

Optimization Blocker: Procedure Calls

¢ Procedure to convert string to lower case

19

University of Washington

Why is That?

¢ String length is called in every iteration!

§ And strlen is O(n), so lower is O(n2)

void lower(char *s)
{
 int i;
 for (i = 0; i < strlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

/* A version of strlen */
size_t strlen(char *s)
{
 size_t length = 0;
 while (*s != '\0') {

s++;
length++;

 }
 return length;
}

21

University of Washington

Improving Performance

� Move call to strlen outside of loop

� Since result does not change from one iteration to another

� Form of code motion/precomputation

void lower(char *s)
{
 int i;
 int len = strlen(s);
 for (i = 0; i < len; i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

void lower(char *s)
{
 int i;
 for (i = 0; i < strlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

22

University of Washington

Optimization Blocker: Procedure Calls
� Why couldn�t compiler move strlen out of inner loop?

� Procedure may have side effects
� For all the compiler knows, strlen could modify the string!

� Function may not return same value for given arguments
� Could depend on other parts of global state

� Procedure lower could interact with strlen

� Compiler usually treats procedure call as a black box that cannot be

analyzed
� Consequence: conservative in optimizations

� Can only do things that it can be sure always give the same results as the

original code

24

University of Washington

Optimization Blocker: Memory Aliasing
// add twice the value stored at yp to the value stored at xp

void twiddle1(int *xp, int *yp)
{
 *xp += *yp;
 *xp += *yp;
}

void twiddle2(int *xp, int *yp)
{
 xp += 2(*yp);
}

� twiddle1 appears to be less efficient

� 6 memory references: two reads each of *yp and *xp, two writes of *xp

� twiddle2 appears to be more efficient

� 3 memory references: read *yp, read *xp, write *xp

� Can a compiler come up with twiddle2 if given twiddle1?

University of Washington

Optimization Blocker: Memory Aliasing
// add twice the value stored at yp to the value stored at xp
// *xp = *xp + 2 * *yp;

void twiddle1(int *xp, int *yp)
{
 *xp += *yp;
 *xp += *yp;
}

void twiddle2(int *xp, int *yp)
{
 xp += 2(*yp);
}

26

� But what if xp == yp?
� twiddle1 quadruples value at xp

� twiddle2 triples value at xp

� Because of this �aliasing�, compiler does not optimize twiddle1
� Could lead to different result

� Assume twiddle1 is programmer�s intent

University of Washington

Optimization Blocker: Memory Aliasing

¢ What is the return value?

¢ Two cases:

§ q and p are different addresses

§ q and p are aliases for the same address

x = 1000;
y = 3000;
*q = y;
*p = x;
return *q;

27

University of Washington

A Final Thought

� Source code optimization can muddle/destroy code clarity and

 program structure
� Certain optimizations are pretty easy and not too messy, so do them �

e.g, move strlen(s) outside the loop

� But it�s not always that simple�

� Worth doing when it actually buys you something
� Use profiling tools to find out where the code is spending its time

(it�s often not where you think!)

(Alas, we probably won�t see gprof and other tools in this course)

�Premature optimization is the root of all evil�
Donald Knuth

28

