

University of Washington

1

The Hardware/Software Interface
CSE351 Winter 2011

Module 8: Going Faster � Pipelining and Parallel Execution

University of Washington

3

How Can We Go Faster? (Part 1)

� Increase the clock rate

� Moore's Law (1965)

� Number of transistors will double about every 2 years

� Smaller transistors faster switching times�

� More transistors more complicated functionality�

� Wirth's Law

� �Software is getting slower more rapidly than hardware becomes faster.�

� Office 2007 slower on a 2007 machine than Office 2000 on a 2000 machine.

� Put multiple copies of the datapath on a single chip

� �Multi-core processors�

� Each core runs a different program

� A single program may not run faster, but if you have a lot of them to run you

get them all done faster

� So why go to multi-core?

University of Washington

4

Moore�s Law

http://iter.rma.ac.be/en/community/Worldwide/index.php

University of Washington

5

Dynamic Power Dissipation

CMOS Inverter

Dynamic power ~ C V2 f

University of Washington

6

http://www.intel.com/pressroom/kits/core2duo/pdf/epi-trends-final2.pdf

University of Washington

8

http://www.sun.com/processors/whitepapers/UST1_pwrsav_v1.0.pdf

University of Washington

9

How Can We Go Faster? (Part 2)

� Execute more than one instruction at a time

� Think about a single datapath / core

� Keep the clock frequency / voltage the same, but execute (say) 5

instructions at a time

� The instruction completion rate with be (up to) 5 times higher than

if we execute only one at a time

� How to do this? Pipelining...

University of Washington

11

The Pipelined Datapath

PC

Inst.
Fetch

PC
Increment

Registers

A
L
U

CC

Data
Memory
Interface

Fetch Decode Execute Memory Write-
back

University of Washington

12

Instructions in flight

PC

Inst.
Fetch

PC
Increment

Registers

A
L
U

CC

Data
Memory
Interface

addl r0, r1

subl r2, r3

irmovl $0, r4

mrmovl 0(r5), r6

rmmovl r7, 0(r5)

addl r0,r1subl r2,r3irmovl $0,r4mrmovl 0(r5),r6

rmmovl r7,0(r5)

University of Washington

13

Notes About Pipelining

� One way to think about this is that the single cycle datapath

leaves most resources �unused� most of the time

� To think about performance, think about the rate at which

instructions complete

� The time between fetching any individual instruction and

completing it is no less than it was in the single cycle datapath

� The big question: Does the pipelined datapath get the right

results?

� A generalization: When will simultaneous execution of instructions get

the same result as their sequential execution?

University of Washington

14

Parallel Execution

addl r0, r1
addl r0, r2
addl r3, r4

 � addl r0, r1 addl r0, r2 addl r3, r4

This is okay

addl r0, r1
addl r1, r2
addl r3, r4

 � addl r0, r1 addl r1, r2 addl r3, r4

This isn't okay

Dependences restrict opportunities for parallel execution

University of Washington

15

Dependences

� Read-after-write (RAW)

� addl r4, r5

addl r5, r6

� Also known as a �flow dependence�

� Also known as a �true dependence�

� Write-after-read (WAR)

� addl r4, r5

addl r3, r4

� Also known as an �anti-dependence�

� Write-after-write (WAW)

� irmovl $0, r5

irmovl $8, r5

� Also known as an �output dependence�

� WAR and WAW are �false dependences�

� The dependences have to do with names, not values

� They can be eliminated by �re-writing the code�

University of Washington

16

Dependences and Pipelining

� WAW (write-after-write)

� Not a problem because all register writes happen (only) in the write stage

� Instructions flow �in order� through the write stage

� WAR (write-after-read)

� Not a problem because:

� register reads happen in decode stage, which precedes the write stage

� instructions flow �in order� through those stages

� so an earlier read has definitely happened before a later write can

possibly occur

University of Washington

17

Dependences and Pipelining

� RAW (read-after-write)

� Problem...

� addl r2, r3

subl r3, r4

� The addl will write register 3 when it reaches stage 5

� The subl will read register 3 when it reaches stage 2

� When it reaches stage 2, the addl is only at stage 3, and

hasn't yet written its result!

� This particular instance of RAW can be fixed using forwarding

University of Washington

18

Forwarding

PC

Inst.
Fetch

PC
Increment

Registers

A
L
U

CC

Data
Memory
Interface

addl r2,r3subl r3,r4

University of Washington

19

Forwarding Doesn't Always Work

� mrmovl 0(r3), r4

addl r4, r5

� The value in memory (to be written to r4) isn't available until too late

� It's fetched during the same cycle that the addl needs to use the ALU to do the add

� In cases like this we have to stall the pipeline

� The unresolvable dependence is recognized during the decode stage

� The fetch and decode stages are stalled (frozen)

� A NOP instruction (a �bubble�) is inserted into the pipeline behind the mrmovl

� Separating the two instructions by a NOP now allows forwarding to work

� The addl fetches its operand from the pipe register that follows the Memory stage

University of Washington

20

Another Problem: Jump instructions

� Every instruction implicitly reads the PC

� Jumps (aka �branches�) write the PC

� There is therefore a RAW dependence between a jump and

the instruction(s) that follow

� For conditional jumps, it may not be known until late in the

pipeline whether the jump should take place or not

� E.g., after the Execute stage

� What should the pipeline do while waiting to resolve the

conditional branch?

University of Washington

21

Branch Prediction

� Branch prediction is the general notion of guessing what the

next PC should be (after a jump has been fetched)

� Option 1: Assume jump will not be taken

� fetch instructions sequentially, like always

� if the jump ends up being taken, convert the pipe registers behind the

branch to represent NOPs, rather than the instructions that have been

fetched

� Note that this is okay so long as those instructions haven't yet

written any registers or memory...

� Why is this okay?

� Mis-predictions waste cycles

� The mis-prediction penalty increases with the depth of the pipeline

University of Washington

22

Branch Prediction (cont.)

� Option 2: Maintain a branch prediction table (in hardware)

� For example (the simplest thing possible)

� Keep a hash table that maps the current value of the PC to the next instruction that should

be fetched (the next PC)

� When a branch is taken, insert the PC of the branch instruction and the target address of

the branch into the table

� E.g., the branch at PC = 0x00041804 transfers control to 0x00042208

� For unconditional branches, you'll miss predict the first time you encounter the branch, but

predict correctly after that

� For conditionals, well... You can imagine missing the first time for a (taken) branch at the

bottom of a loop, then then hitting until the loop terminates

� There are MANY branch prediction schemes, of many levels of complexity

� (You can start to see where all the transistors Moore's Law has given us have

been going...)

University of Washington

23

Beyond Simple Pipelining

IF ID MEM WB

Integer unit

E
X

FP/integer multiply

FP adder

FP/integer divider

DIV

M
1

M
2

M
3

M
4

M
5

M
6

M
7

A1 A4A-3A2

University of Washington

24

Beyond Pipelines

� We have two basic choices:

� Only one instruction may be in EX stage, no matter how long it takes it to get through there, or...

� Let's cram instructions into EX as fast as we can

� Which should we do?

� Reminder: We're trying to go fast...

� Putting multiple functional units in parallel is both a problem and an opportunity

� The Opportunity:

� Hey, this is great! Why don't I just stuff a bunch of ALUs, some memory interfaces, some float units,

etc. in there?

� More hardware � higher performance?

� In fact, why don't I issue more than one instruction per cycle?!!!

� �multi-issue� NOT part of today's material, but not far from it�

University of Washington

25

Multiple Functional Units

� In order execution leads to under-utilization of
hardware

� Parallel execution � out of order execution /
completion

� Time per stage is not a constant

» Structural hazards are possible

� FP divide takes many cycles, and is not pipelined

� May need to write more than one register in a

cycle

� Out of order execution

� RAW dependences may be longer

� �Precise exceptions� are more difficult to implement

University of Washington

26

Eliminating False Dependences

� False (WAR and WAW) dependences restrict the progress of

successive instructions

� It can be difficult to find enough dispatchable instructions to keep the

functional units busy

� False dependences are dependences on names, not values

� They can be eliminated by by �using more names�

University of Washington

27

Renaming: Using Java as an Example

String name = getName(id0);

String printStr = id0 + �: � + name;

name = getName(id1);

printStr = id1 + �: � + name;

String name = getName(id0);

String printStr = id0 + �: � + name;

name = getName(id1);

printStr = id1 + �: � + name;

University of Washington

28

Rewritten Code

String name0 = getName(id0);

String printStr0 = id0 + �: � + name0;

String name1 = getName(id1);

String printStr1 = id1 + �: � + name1;

String name0 = getName(id0);

String printStr0 = id0 + �: � + name0;

String name1 = getName(id1);

String printStr1 = id1 + �: � + name1;

� Can't get rid of flow dependences by renaming

� Renaming costs memory

� Loops tend to produce false dependences

� �Loop unrolling� does what that sounds like

� Unrolled loops can benefit from renaming

University of Washington

29

Renaming in the Processor: Register Renaming

� The ISA says there are 8 registers

� Programs are forced to reuse them

� The hardware includes, say, 64 registers

� As instructions are fetched, the hardware detects false

dependences and rewrites the dependent instruction to use

some otherwise unused register

� addl r3, r4 addl r3, r4�

irmovl $0, r3 irmovl $0, r17

addl r5, r3 addl r5, r17

addl r3, r6 addl r17,r6

� This requires a somewhat complicated record keeping scheme

in the hardware

� More transistors used...

University of Washington

30

Final Observations

� The ISA is a logical specification

� There are direct implementations, but...

� There's no reason the implementation has to correspond directly to the simple logical

view provided by the ISA

� Any implementation that gets results equal to what the ISA promises is correct

� �Multi-core� is visible to programs

� Moreover, programs have to be (re)written to take advantage of them

� Clever implementations of a fixed ISA are not visible to programs

� Old programs still work

� Programs compiled a while ago probably run faster on newer implementations, but...

� Compilers may be aware of some aspects of implementation, and adjust the code they generate

accordingly

� E.g., the compiler may understand the branch prediction algorithm, and try to generate code that

tends to minimize the mis-prediction rate

