
University of Washington

The Hardware/Software Interface
CSE351 Winter 2011

Module 5: Instruction Set Architectures

University of Washington

Today Topics: Instruction Set Architectures

� ISA Goals
� ISA Design Decisions

� x86 ISA overview

2

University of Washington

Preliminaries 1

� We're going to talk very generally

� What does an ISA look like?

� What design decisions must be made?

� What are the factors affecting those decisions?

� We'll talk about specifics of the Intel x86 architecture in more

detail later

University of Washington

The General ISA

PC

...

Registers

Instructions

Memory

Data

CPU

University of Washington

General ISA Design Decisions

� Instructions

� What instructions are available? What do they do?

� How are then encoded?

� Registers

� How many registers are there?

� How wide are they?

� Memory

� How do you specify a memory location?

University of Washington

Preliminaries 2

� The goal of the CPU is to execute programs quickly

� The time required to execute a program depends on:

� The program (as written in C, for instance)

� The compiler: what set of assembler instructions it translates the C

program into

� The ISA: what set of instructions it made available to the compiler

� The hardware implementation: how much time it takes to execute an

instruction

� There is a complicated interaction among these

University of Washington

CISC vs. RISC

� CISC: Complicated Instruction Set Processor

RISC: Reduced Instruction Set Processor

� CISC's have complicated instructions

� Each one does a lot, so is slow to execute, but...

� A smart compiler can generate machine code that requires only a

relatively small number of instruction executions

� RISC's have small, regular instruction sets

� Each instruction does only something very simple, so is fast, but...

� A relatively large number of instruction executions are required to

complete the program

University of Washington

A trivial CISC vs. RISC example

� x = x + A[y+2]

� CISC

� addl 8(r1, r2, 4), r3

� r1: pointer to A

r2: y

r3: x

� meaning: add the 32-bits at address (r1) + 4*(r2) + 8 to r3

� RISC

� sll r2, 2, r4 # r4 = y*4

addi r4, 8, r4 # r4 += 8

load 0(r4), r4 # r4 = A[y+2]

add r4, r3, r3 # add A[y+2] to x

� Which is faster?

University of Washington

CISC vs. RISC: Which is faster?

� The answer isn't obvious

� It depends on what C code programmers write, what machine code compilers can

generate, and how fast hardware that implements the ISA can be

� Extensive analysis of these factors indicates that the RISC wins

� Why?

� A side effect of being able to execute some complicated instructions is that simple

instructions on the CISC execute more slowly than on the RISC

� Simple instructions are common; complicated ones are rare

� Complicated instructions interfere with parallelizing the execution of the

instruction stream

University of Washington

Preliminaries 3

� This tradeoff wasn't understood when the x86 architecture was designed

� The prevailing wisdom was that the more that could be done in hardware, the faster the

machine

� So, the x86 is a CISC

� Can't change the ISA because too many installed programs rely on it

� If buying a new computer required that you re-purchase Microsoft Word, you might not

buy a new computer

� (What Intel did: the hardware compiles the x86 CISC program into a RISC

program �on the fly,� and the hardware implements the (hidden) RISC ISA.)

University of Washington

The Upshot

� The book talks a lot about the particulars of the x86 ISA

� The x86 is hugely important, of course

� But, the details aren't that important to the typical programmer

� The book then simplifies to the y86 architecture

� The y86 is basically a RISC subset of the x86

University of Washington

The x86 ISA

� Main abstractions

� Instructions

� Executed by the CPU

� Data

� Memory and registers

PC

...

Registers

Memory

CPU

University of Washington

x86 ISA Part 1
Instructions

University of Washington

Instructions

� There are three kinds of instructions

� Data transformation

� Examples: and, or, shift, add, subtract, multiply, divide, �

� Data copy

� Example: move

� Conditionals

� Example: most jumps, some moves

Aside: An unconditional jump is simply an assignment to the PC. So,
it's either a data copy or perhaps a data transformation instruction.

The key functionality we need is an operation whose outcome depends
on a test � a conditional.

University of Washington

Conditional Control Flow

� Two things are required:

� Evaluate a condition

� Example: compare [R1] with [R2]

� Either branch or continue execution sequentially depending on the

outcome of the condition

� Examples: equal, not equal, less than, less than or equal, not less

than (greater than or equal), �

University of Washington

Evaluating the Condition

� The result of the condition evaluation must be put somewhere

� We could use a register, but registers are valuable

� And on the x86 there are only 8 of them!

� (And on the x86 there are only 6 of them!)

� Instead, we use a special register, the condition code

� The condition code is a bit mask: overflow, sign, carry, parity, and

zero bits

� These bits are available when performing arithmetic operations, and

it's cheap to save them to the condition code, so the x86 does

� C code fragment: x = x + y; if (x != 0) ...

� Rather than add r3,r4 need only add r3,r4
 cmp r4,$0 bz skip

 bz skip

University of Washington

Evaluating the Condition (cont.)

� As well as being set as a side-effect of arithmetic instructions,

there is a set of compare instructions whose only action is to set

the condition code

� An arithmetic operation writes some register

� Registers are valuable!

� The cmp instruction compares and sets the condition code bits, but

doesn't alter any registers

� Lessons for later:

� Registers are valuable!

� The x86 has only 8 of them!

University of Washington

Encoding Branches

� The y86 (and z86) architectures encode branches using 32-bit

absolute addresses

� There is a 1 byte opcode

� There is a 4 byte absolute address

� There are two problems with that:

� The instruction takes a lot of bytes

� You need to know the absolute address of the branch at assembly time

� Why might it be impossible to know the absolute address at assembly

time?

University of Washington

Encoding Branches (cont.)

� Both problems can be (mostly) solved using PC relative addressing

� Instead of giving a 32-bit absolute address, give an 8- or 16-bit offset from the current PC

� 8 bits: can branch between -127 and +128 bytes from current PC

� 16 bits: can branch between -32,768 and +32,767 bytes away

� Most branches are within those ranges

� Note that we don't need to know where the code will be loaded in memory at

assembly time

� The OS will set the PC to the first instruction of the program, before starting it

� PC relative encoded branches will all work, no matter where the code is loaded

University of Washington

PC Relative Addressing

0x100 cmp r2, r3 0x1000

0x102 je 0x70 0x1002

0x104 � 0x1004

� � �

0x172 add r3, r4 0x1072

� PC relative branches are relocatable

� Absolute branches are not

University of Washington

Conditionals and Control Flow

� A test / conditional branch is sufficient to implement most

control flow constructs offered in higher level languages

� if (condition) then {...} else {�}

� while(condition) {�}

� do {�} while (condition)

� for (initialization; condition;) {...}

� (Unconditional branches implemented some related control

flow constructs

� break, continue)

University of Washington

Compiling Loops

 C/Java code

while (sum != 0) {

 <loop body>

}

 Machine code

loopTop: cmp r3, $0

 be loopDone

 <loop body code>

 jmp loopTop

loopDone:

� How to compile other loops should be clear to you

� The only slightly tricky part is to be sure where the conditional branch

occurs: top or bottom of the loop

� Q: How is for(i=0; i<100; i++) implemented?

� Q: How are break and continue implemented?

University of Washington

The switch statement

� At first glance, switch doesn't

conform to our notion of �either

take the branch or not�

� It's not a binary decision, it's n-ary

� switch can be re-written as an if-then-else

� transforms it into n binary decisions

� there is sometimes an optimized implementation available

to the compiler

� jump tables

switch (class) {

 case 0: <some code>

 break;

 case 1: <some code>

 break;

 case 4: <some code>

 break;

�

 default: <some code>

 break;

}

University of Washington

switch / jump tables

� A jump table is an array of addresses

� Each address points to an instruction

� In the case of switch, the jump table

entries point to the sections of code

for the case's

� To implement the switch:

� use the selector (class, in the example) as an index into the jump table

� load the 32-bit address from the jump table into a register, say r3

� jmp r3

� This is an unconditional jump

� The PC is assigned the contents of r3

switch (class) {

 case 0: <some code>

 break;

 case 1: <some code>

 break;

 case 4: <some code>

 break;

�

 default: <some code>

 break;

}

University of Washington

jump table picture

switch (class) {

 case 0: <some code>

 break;

 case 1: <some code>

 break;

 case 4: <some code>

 break;

 default: <some code>

 break;

}

University of Washington

switch / jump table review

switch (switch) {

 case 0: <some code>

 break;

 case 1: <some code>

 break;

 case 52000: <some code>

 break;

 default: <some code>

 break;

}

Why is the compiler unlikely to implement this as a jump table?

University of Washington

switch aside

int x, y, z, class;

�

switch (class) {

 case x: <some code>

 break;

 case y: <some code>

 break;

 case z: <some code>

 break;

 default: <some code>

 break;

}

Why is this not legal (in most languages)?

University of Washington

x86 ISA Part 2
Data

University of Washington

x86 Data

� Programmer controlled data is held in registers and memory

� The ISA says registers are 32-bits wide

� The ISA says that memory:

� is byte addressable

� allows transfers of 1, 2, 4 bytes into / out of registers

� The �names� for data are defined by the ISA, not the

programmer

� registers 0 � 7

� memory locations 0, 1, 2, �

University of Washington

Types

� There is some notion of type defined by the ISA

� byte vs. word

� integer vs. float

� However, the type is not associated with the data

� It's associated with the operation being performed on the data

� add 8(r2), r3 vs. fadd 8(r2), f3

� There is no notion of type checking

� What might type checking mean at the hardware level?

� Why would you not implement that?

University of Washington

Addressing memory

� Instructions that use memory have to specify an address

� Embedding addresses into instructions has two drawbacks

� Instructions are big: an address is 32 bits

� You have to know the address at assembly time

� You don't if the code wants to 'new' up an object, say

� You don't if you're not sure just where the code will be loaded into memory

� You don't if only part of the code is compiled at a time

� In C, it's routine to compile just one file of a program that is composed of dozens

of files

� The compiler sees only the code in that file, not the whole program, so cannot

decide where in memory code or data will be located

� Resolving this particular issue is the job of the linker. We'll come back to it later.

University of Washington

Addressing Memory (continued)

� The most general memory addressing scheme is to indirect

using a register

� The instruction names a register that holds the address

� mrmovl (r2), r3

� An arbitrary (and arbitrarily long) sequence of instructions can be used

to compute the address

� That works, but you end up needing either

� a lot of registers, each pointing at a variable currently used frequently,

or

� a single register but a lot of instructions (re)computing addresses you

need frequently

University of Washington

Addressing Memory (cont.)

� Base-displacement addressing provides more flexibility

� mrmovl $8(r2), r3

� effective address is 8 + R[r2]

� Example use of base-displacement addressing: arrays

� Array access with an index known at compile time

� A[2]

� r2 points at array A; the offset of element 2 is 8

University of Washington

Array Addressing

� It isn't that common to know the array index at compile time

� A[j] is more common than A[2]

� The x86 supports this too, meaning it provides a way to create the required

effective address without using extra registers or extra instructions

� (r2, r5, 4)

� r2 points to A

� r5 holds j (you needed that in a register anyway)

� 4 is the size of each element of the array, in bytes

� effective address is R[r2] + R[r5]*4

� This is very CISC...

� x86 even supports A[j+2]

� 8(r2,r5,4)

University of Washington

Back to base-displacement addressing...

� Simple (RISC-y) base-displacement addressing is useful beyond

arrays

� Distinct variables that the compiler knows it has allocated

contiguously can be addressed using a single register

� int i, j, k;

� r2 points to i; $4(r2) is j; $8(r2) is k

� Note that the compiler knows the offsets of the variables at compile time

� Note that it isn't essential that it know the value of the �base� (r2) � it

can generate instructions to set that up at run time

� Note that only a single base register allows access to a large number of

distinct variables

University of Washington

C structs

� C provides a user-defined, structured data type: the struct

� struct {

 int accountNumber;

 int balance; // in pennies

} account;

� That actually creates a variable, named account, of the struct type, but there's a

way to define the type and then declare many instances of it as well

� Note that if I have a pointer to account in r2, say:

� 0(r2) points to account.accountNumber

� 4(r2) points to account.balance

� This idea is how the C++ compiler generates instructions to access the

instance variables of objects (C++ has classes...)

University of Washington

C: User defined types

� C's facility for defining types is really just an aliasing facility

� typedef unsigned char byte;

� You can now type 'byte' anywhere 'unsigned char' would have made sense

� typedef struct {

 int accountNumber;

 int balance; // in pennies

} AccountType;

AccountType accounts[200];

� Define a type (AccountType),, then create an array of elements of that type

� Type equivalence in C is by name

� So, an element of array accounts is not the same type as variable 'account' on the previous slide (even

though the struct definitions are identical)

� accounts[0] is of type 'AccountType'

� account is of type 'struct <anonymous>'

� When types are compatible, struct assignment is defined (as bit copy)

� accounts[0] = accounts[10]; // is legal

� This is �shallow copy�, in 142/3 terminology

University of Washington

x86 ISA Part III
ISA Abstractions v. HLL Abstractions

University of Washington

Overview

� You know a lot about Java

� You also know a bit about C, and how much of it is a lot like Java

� You know the essentials about what hardware does

� Let's look at the programming abstractions Java/C provide and

compare with what the hardware provides

� Anything not provided by the hardware must be being provided by

software, e.g., the compiler

University of Washington

HLL vs. HW
� Let's divide the discussion into three parts:

� things in C I don't understand (e.g., because they're not legal in Java)

� statements, operators, and control flow

� data / variables #include <stdio.h>

int N = 16;

int fib(int n) {
 int result;
 if (n == 0) result = 0;
 else if (n == 1) result = 1;
 else result = fib(n-1) + fib(n-2);
 return result;
}

int main(int argc, char* argv[]) {
 int result = fib(N);
 printf("Fibonnaci[%d] = %d\n", N, result);
 return 0;
}

