

University of Washington

1

The Hardware/Software Interface
CSE351 Winter 2011

Module 4: Floating Point

(but nearly nothing about C pointers)

University of Washington

2

Today Topics: Floating Point

¢ Background: Fractional binary numbers

¢ IEEE floating point standard: Definition

¢ Example and properties

¢ Rounding, addition, multiplication

¢ Floating point in C

¢ Summary

CSE351 - Autumn 2010 2

University of Washington

3

(Abstract) Fractional binary numbers

¢ What is 1011.101?

3

University of Washington

4

• • •

b
–1.

Fractional Binary Numbers

¢ Representation

§ Bits to right of �binary point� represent fractional powers of 2

§ Represents rational number:

b
i
b
i–1

b
2
b

1
b

0
b

–2
b

–3
b

–j• • •• • •

1

2

4

2i–1

2i

• • •

1/2

1/4

1/8

2–j

bk ×2
k

k=- j

i

å

4

University of Washington

5

Fractional Binary Numbers: Examples
� Value Representation

5 and 3/4

2 and 7/8

0 and 23/32

101.11

10.111

0.10111

5

University of Washington

6

Issue #1: Representable Numbers

� Limitation
� Even given an arbitrary number of bits, can only exactly represent

numbers of the form x/2k

� Other rational numbers have repeating bit representations

� Value Representation
1/3 0.0101010101[01]

1/5 0.001100110011[0011]

1/10 0.0001100110011[0011]

6

University of Washington

7

Fixed Point Representation

� float 32 bits; double 64 bits� �

� We might try representing fractional binary numbers by picking a

fixed place for an implied binary point

� �fixed point binary numbers�

� Let's do that, using 8 bit floating point numbers as an example

� #1: the binary point is between bits 2 and 3

 b
7
 b

6
 b

5
b

4
 b

3
 [.] b

2
 b

1
 b

0

� #2: the binary point is between bits 4 and 5

 b
7
 b

6
 b

5
 [.] b

4
 b

3
 b

2
 b

1
 b

0

� The position of the binary point affects the range and precision

� range: difference between the largest and smallest representable numbers

� precision: smallest possible difference between any two numbers

University of Washington

8

Fixed Point Pros and Cons

� Pros

� It's simple. The same hardware that does integer arithmetic can do fixed point arithmetic

� In fact, the programmer can use ints with an implicit fixed point

� E.g., int balance; // number of pennies in the account

� ints are just fixed point numbers with the binary point to the right of b
0

� Cons

� There is no good way to pick where the fixed point should be

� Sometimes you need range, sometimes you need precision. The more you have of one,

the less of the other

� Fixing fixed point representation: floating point

� Do that in a way analogous to �'scientific notation�

� Not 12000000, but 1.2 x 107

Not 0.0000012, but 1.2 x 10-6

University of Washington

9

Floating Point

� Abstractly, floating point is analogous to scientific notation

� Decimal:

� Not 12000000, but 1.2 x 107

Not 0.0000012, but 1.2 x 10-6

� Binary:

� Not 11000.000, but 1.1 x 24

Not 0.000101, but 1.01 x 2-4

� We have to divvy up the bits we have (e.g., 32) among:

� the sign (1 bit)

� the significand

� the exponent

University of Washington

10

IEEE Floating Point

� IEEE Standard 754
� Established in 1985 as uniform standard for floating point arithmetic
� Main idea: make numerically sensitive programs portable

� Specifies two things: representation and result of floating operations

� IEEE 754 now supported by all major CPUs

� Driven by numerical concerns
� Numerical analysts predominated over hardware designers in defining

standard

� Nice standards for rounding, overflow, underflow, but...

� But... hard to make fast in hardware

� Float operations can be an order of magnitude slower than integer

10

University of Washington

11

� Numerical Form:
(–1)s

 M 2E

� Sign bit s determines whether number is negative or positive
� Significand (mantissa) M normally a fractional value in range [1.0,2.0).
� Exponent E weights value by power of two

� Encoding
� MSB s is sign bit s
� frac field encodes M (but is not equal to M)
� exp field encodes E (but is not equal to E)

Floating Point Representation

s exp frac

11

University of Washington

12

Precisions

� Single precision: 32 bits

� Double precision: 64 bits

� Extended precision: 80 bits (Intel only)

s exp frac

s exp frac

s exp frac

1 8 23

1 11 52

1 15 63 or 64

12

(largest value: about 3.4 x 1038)

(largest value: about 1.8 x 10308)

(largest: about 1.2 x 104932)

University of Washington

13

Normalization and Special Values
� �Normalized� means mantissa has form 1.xxxxx

� 0.011 x 25 and 1.1 x 23 represent the same number, but the latter makes better use
of the available bits

� Since we know the mantissa starts with a 1, don't bother to store it

� Special values:

� The float value 00...0 represents zero

� If the exp == 11...1 and the mantissa == 00...0, it represents ¥

� E.g., 10.0 / 0.0 � ¥

� If the exp == 11...1 and the mantissa != 00...0, it represents NaN

� �Not a Number�

� Results from operations with undefined result

� E.g., 0 * ¥

13

University of Washington

14

Floating Point and the Programmer

#include <stdio.h>

int main(int argc, char* argv[]) {

 float f1 = 1.0;

 float f2 = 0.0;

 int i;

 for (i=0; i<10; i++) {

 f2 += 1.0/10.0;

 }

 printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);

 printf("f1 = %10.8f\n", f1);

 printf("f2 = %10.8f\n\n", f2);

 f1 = 1E30;

 f2 = 1E-30;

 float f3 = f1 + f2;

 printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");

 return 0;

}

$./a.out

0x3f800000 0x3f800001

f1 = 1.000000000

f2 = 1.000000119

f1 == f3? yes

University of Washington

15

Summary

� As with integers, floats suffer from the fixed number of bits

 available to represent them
� Can get overflow/underflow, just like ints

� Some �simple fractions� have no exact representation

� E.g., 0.1

� Can also lose precision, unlike ints

� �Every operation gets a slightly wrong result�

� Mathematically equivalent ways of writing an expression may

 compute differing results

� NEVER test floating point values for equality!

15

