

University of Washington

1

The Hardware/Software Interface
CSE351 Winter 2011

Module 3: Integers

(and more about C pointers)

University of Washington

Today�s Topics

� Representation of integers: unsigned and signed
� Arithmetic and shifting

� C Pointer arithmetic
� And more about C pointers

CSE351 - Autumn 2010 2

University of Washington

Encoding Integers

� The hardware (and C) supports two flavors of integers:

� unsigned � only the non-negatives

� signed � both negatives and non-negatives

� There are only 2W distinct bit patters of W bits, so...

� Can't represent all the integers

� Unsigned values are 0 ... 2W-1

� Signed values are -2W-1 ... 2W-1-1

University of Washington

Unsigned Integers

� Unsigned values are just what you expect

� b
7
b

6
b

5
b

4
b

3
b

2
b

1
b

0
 = b

7
27 + b

6
26 + b

5
25 + � + b

1
21 + b

0
20

� Interesting aside: 1+2+4+8+...+2N-1 = 2N -1

� You add/subtract them using the normal

�carry/borrow� rules, just in binary

� An important use of unsigned integers in C is pointers

� There are no negative memory addresses

 00111111
+00000001

 01000000

 63
+ 1

 64

University of Washington

2's Complement (Signed) Integers

� Let's do the natural thing for the positives

� They correspond to the unsigned integers of the same value

� Example (8 bits): 0x00 = 0, 0x01 = 1, �, 0x7F = 127

� But, we need to let about half of them be negative

� Use the high order bit to indicate 'negative'

� Call it �the sign bit�

� Examples (8 bits):

� 0x00 = 00000000
2
 is non-negative, because the sign bit is 0

� 0x7F = 01111111
2
 is non-negative

� 0x80 = 10000000
2
 is negative

University of Washington

2's Complement Negatives

� How should we represent -1 in binary?

� Possibility 1: 10000001
2

Use the MSB for �+ or -�, and the other bits to give magnitude

(Unfortunate side effect: there are two representations of 0!)

� Possibility 2: It would be handy if we could use the same hardware

adder to add signed integers as unsigned

� We add unsigned using the simple carry rule, so...

� What should the 8-bit representation of -1 be?

 00000001

+???????? (want whichever bit string that gives right result)

 00000000

 00000010 00000011

+???????? +????????

 00000000 00000000

University of Washington

2's Complement Negatives

� What should the value of -1 be, in binary?

� Possibility 1: 10000001
2

Use the MSB for �+ or -�, and the other bits to give magnitude

� Possibility 2: It would be handy if we could use the same hardware

adder to add signed integers as unsigned

� We add unsigned using the simple carry rule, so...

� What should the 8-bit representation of -1 be?

 00000001

+11111111 (want whichever bit string that gives right result)

 00000000

 00000010 00000011

+11111110 +11111101

 00000000 00000000

University of Washington

Unsigned & Signed Numeric Values
� Both signed and unsigned integers

have limits
� If you compute a number that is too

big, you wrap

� If you compute a number that is too

small, you wrap

� The CPU may be capable of �throwing

an exception� for overflow on signed

values

� It won't for unsigned

� But C and Java just cruise along

silently when overflow occurs...

X SignedUnsigned

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

�88

�79

�610

�511

�412

�313

�214

�115

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7

8

University of Washington

Numeric Ranges
¢ Unsigned Values

§ UMin = 0
000�0

§ UMax = 2w � 1
111�1

¢ Two�s Complement Values

§ TMin = �2w�1

100�0

§ TMax = 2w�1 � 1
011�1

¢ Other Values

§ Minus 1

111�1 0xFFFFFFFF (32 bits)

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111

TMax 32767 7F FF 01111111 11111111

TMin -32768 80 00 10000000 00000000

-1 -1 FF FF 11111111 11111111

0 0 00 00 00000000 00000000

Values for W = 16

University of Washington

10

Values for Different Word Sizes

W

 8 16 32 64

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615

TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807

TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

10

University of Washington

Signed vs. Unsigned in C
� Constants

� By default are considered to be signed integers

� Unsigned if have �U� as suffix
� 0U, 4294967259U

� Casting
� int tx, ty;

� unsigned ux, uy;

� Explicit casting between signed & unsigned same as U2T and T2U
� tx = (int) ux;

� uy = (unsigned) ty;

� Implicit casting also occurs via assignments and procedure calls
� tx = ux;

� uy = ty;

�

12

University of Washington

Pointer Arithmetic

� Pointer values are unsigned

� Unfortunately, the software (e.g., the OS) sets things up in a way that you're unlikely ever to deal with values where

signed vs. unsigned matters...

� int* pInt; // p can hold an address that points to an integer

int * pInt2; // same thing

int *pInt3; // also the same thing

int* pInt4, pInt5; // pInt4 is a pointer, but pInt5 is an int

int *pInt6, *pInt7; // both pInt6 and pInt7 are pointers

� pInt++; // is legal

� It means �increment pInt to the next element of the type it points at�

� The value in pInt is always incremented in units of bytes

� So, in this case, pInt is increased by 4 (#bytes in an int)

� char* pChar = �This is a test�; // this is legal too; 'pChar' names 4 bytes; '*pChar' names one byte

char c = *(pChar+8);

� c == 'a'

� *(pChar+8) and pChar[8] have exactly the same meaning in C

University of Washington

String functions in C

� Strings are a convention in C

� A �null terminated array of char�

� The �null� is a byte with value 0, written '\0' as a character

� What's the difference between �A� and 'A'?

� �A� occupies two bytes

� 'A' occupies one byte

� Operations on strings are done using library methods

that understand the convention

� strlen(), strcpy(), strcat(), strcmp(), ...

A 0

A

University of Washington

Example strlen() implementation

int strlen(char* str) {

char* p;

for (p=str; *p; p++) ;

return (int)(p � str);

}

� p is initialized to point to the 1st character of the string

� each loop iteration increments p � points to next char in string

� we're done when the character p points at is false (0)

� successive string bytes occupy higher memory addresses

� So the result is p � str

� strlen doesn't count the '\0' as part of the length of the string

University of Washington

Error scenarios

int strlen(char* str) {

char* p;

for (p=str; *p; p++) ;

return (int)(p � str);

}

� What if the caller forgot to null terminate the string?

� What if the caller passes in a pointer that doesn't point to a string?

� E.g., what does strlen(NULL) return?

� Can we add code to strlen() to detect these errors?

University of Washington

17

Badness Example 1

int strlen(char* str) {

char* p;

for (p=str; *p; p++) ;

return (int)(p � str);

}

#include <stdio.h>

int main(int argc, char* argv[]) {

char* p = �This is a test�;

printf(�%d\n�, strlen(p));

printf(�%d\n�, strlen(&p[3]));

printf(�%d\n�, strlen(p[3]));

return 0;

}

What is printed?

(What does char* argv[] mean?)

University of Washington

18

Badness Example 1 Answers

$ gcc -Wall strtest.c

strtest.c: In function �main�:

strtest.c:15: warning: passing argument 1 of �strlen� makes pointer from

integer without a cast

/usr/include/string.h:399: note: expected �const char *� but argument is

of type �char�

$./a.out

14

11

Segmentation fault

Note: I compiled the code for main() from the previous slide, but with
 #include <string.h>
 added at the top, and without the code for strlen() in my file.

University of Washington

19

Badness Example 2

#include <stdio.h>

#include <string.h>

int main(int argc, char* argv[]) {

int intArray1[] = {1, 2, 3, 0};

int intArray2[] = {-1, -2, -3};

printf(�%d\n�, strlen(intArray1));

printf(�%d\n�, strlen(intArray2));

return 0;

}

What is printed?

University of Washington

20

Badness Example 2 Answers

$ gcc -Wall strtest.c

strtest.c: In function �main�:

strtest.c:18: warning: passing argument 1 of �strlen� from incompatible

pointer type

/usr/include/string.h:399: note: expected �const char *� but argument is

of type �int *�

strtest.c:19: warning: passing argument 1 of �strlen� from incompatible

pointer type

/usr/include/string.h:399: note: expected �const char *� but argument is

of type �int *�

$./a.out

1

16

int intArray1[] = {1, 2, 3, 0};

int intArray2[] = {-1, -2, -3};

University of Washington

21

Even Worse Example 3

#include <stdio.h>

#include <string.h>

int main(int argc, char* argv[]) {

int intArray1[] = {1, 2, 3, 0};

int intArray2[] = {-1, -2, -3};

printf(�%d\n�, strlen((char*)intArray1));

printf(�%d\n�, strlen((char*)intArray2));

return 0;

}

$ gcc -Wall strtest.c

$./a.out

1

16

