University of Washington

The Hardware/Software Interface
CSE351 Winter 2011

Module 3: Integers
(and more about C pointers)

University of Washington

‘ H

Today’s Topics

Representation of integers: unsigned and signed
Arithmetic and shifting

C Pointer arithmetic
And more about C pointers

CSE351 - Autumn 2010 2

University of Washington

Encoding Integers

* The hardware (and C) supports two flavors of integers:

e unsigned — only the non-negatives

* signed — both negatives and non-negatives

* There are only 2" distinct bit patters of W bits, so...

e Can't represent all the integers
¢ Unsigned valuesare0 ... 2"-1

* Signed values are -2"*... 2"-1

Unsigned Integers

* Unsigned values are just what you expect

« bbbbbbbb =b2 +b2+b2 + .. +b2 + b2

7765473200

00111111 63
+00000001 + 1
01000000 64

- Interesting aside: 1+2+4+8+...+2"=2"-1

* You add/subtract them using the normal
“carry/borrow” rules, just in binary

* Animportant use of unsigned integers in Cis pointers

* There are no negative memory addresses

University of Washington

2's Complement (Signed) Integers

* Let's do the natural thing for the positives

* They correspond to the unsigned integers of the same value

- Example (8 bits): 0x00 = 0, 0x01 =1, ..., Ox7F = 127
e But, we need to let about half of them be negative

e Use the high order bit to indicate 'negative’

e Callit “the sign bit”

e Examples (8 bits):
- 0x00 = 00000000, is non-negative, because the sign bit is 0
- O0x7F=01111111 is non-negative
- 0x80 = 10000000, is negative

University of Washington

2's Complement Negatives

¢ How should we represent -1 in binary?

+ Possibility 1: 10000001,

Use the MSB for “+ or -”, and the other bits to give magnitude
(Unfortunate side effect: there are two representations of 0!)

e Possibility 2: It would be handy if we could use the same hardware
adder to add signed integers as unsigned

- We add unsigned using the simple carry rule, so...

- What should the 8-bit representation of -1 be?

00000001

+22°222°272°2 (want whichever bit string that gives right result)
00000000
00000010 00000011

+2222222?2 +22222222

00000000 00000000

University of Washington

2's Complement Negatives

* What should the value of -1 be, in binary?

« Possibility 1: 10000001,
Use the MSB for “+ or -”, and the other bits to give magnitude

e Possibility 2: It would be handy if we could use the same hardware
adder to add signed integers as unsigned

- We add unsigned using the simple carry rule, so...

- What should the 8-bit representation of -1 be?

00000001
+11111111 (want whichever bit string that gives right result)
00000000

00000010 00000011
+11111110 +11111101

00000000 00000000

Unsigned & Signed Numeric Values

X Unsigned] Signed * Both signed and unsigned integers
0000 0 0 have limits
0001 1 1 ° If.you compute a number that is too
0010 > > big, you wrap
0011 3 3 * If you compute a number that is too
0100 4 4 small, you wrap
0101 5 5
0110 6 6 * The CPU may be capable of “throwing
0111 7 7 an exception” for overflow on signed
1000 8 -8 values
1001 9 -7
1010 10 -6 * It won't for unsigned
1011 11 =) * But Cand Java just cruise along
1100 12 —4 silently when overflow occurs...
1101 13 -3
1110 14 -2
1111 15 -1

University of Washington

Numeric Ranges

¢ Unsigned Values

¢ Two’s Complement Values
§ UMin = 0

§ T™in = -~
000...0 100..0
5 UM‘i’il . = 2l § TMax = -1
011...1

¢ Other Values

§ Minus 1
111..1 OxFFFFFFFF (32 bits)

Values for W =16

Decimal Hex Binary
UMax 65535| FF FF| 11111111 11111111
TMax 32767| 7F FF| 01111111 11111111
TMin -32768| 80 00| 10000000 00000000
-1 -1 FF FF| 11111111 11111111
0 0| 00 00| 00000000 00000000

University of Washington

Values for Different Word Sizes

W
8 16 32 64
UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

10

University of Washington

Arithmetic and Shift Operations

* Left shift: x << y
* Multiplies x by 2**y
00000010, << 2 ==00001000, 2*2'=8

@ Undefined behavior when y < 0 or y = word_size
@ You CAN get the wrong result (overflow)

* (Arithmetic) Right shift: x >> vy
* Divide x by 2**y
« 00000010, >> 1 == 00000001, 2/2'==1

¢ 11111110,>>1==11111111 -2/2'==-1

* Note: correct truncation (towards 0) requires some care
with signed ints

11

University of Washington

Signed vs. Unsigned in C

* Constants
* By default are considered to be signed integers

* Unsigned if have “U” as suffix
* 0U, 4294967259U

* Casting
°* int tx, ty;
* unsigned ux, uy;

* Explicit casting between signed & unsigned same as U2T and T2U
° tx = (int) ux;

* uy = (unsigned) ty;

* Implicit casting also occurs via assignments and procedure calls
* tx = ux;

* uy = ty;

University of Washington

Pointer Arithmetic

« Pointer values are unsigned

« Unfortunately, the software (e.g., the OS) sets things up in a way that you're unlikely ever to deal with values where
signed vs. unsigned matters...

o int* pint; // p can hold an address that points to an integer
int * pInt2; // same thing
int *pInt3; // also the same thing

int* pInt4, pInt5; // pint4 is a pointer, but pInt5 is an int
int *pInt6, *pInt7; // both pInt6 and pInt7 are pointers

o pint++; //islegal
« It means “increment pint to the next element of the type it points at”
« The value in pInt is always incremented in units of bytes

— So, in this case, pInt is increased by 4 (#bytes in an int)

« char* pChar = “This is a test”; // this is legal too; 'pChar' names 4 bytes; '*pChar' names one byte
char c = *(pChar+8);

« c=='a'

o *(pChar+8) and pChar[8] have exactly the same meaning in C

University of Washington

String functions in C

e Strings are a conventionin C

* A “null terminated array of char”

- The “null” is a byte with value 0, written \0' as a character

* What's the difference between “A” and 'A'?

- “A” occupies two bytes Alo

- 'A' occupies one byte
A

* Operations on strings are done using library methods
that understand the convention

e strlen(), strcpy(), strcat(), strcmp(),

University of Washington

Example strlen () implementation

int strlen(char* str) {
char* p;
for (p=str; *p; pt++) ;
return (int) (p - str);

» pisinitialized to point to the 1* character of the string
« each loop iteration increments p — points to next char in string
* we're done when the character p points at is false (0)

* successive string bytes occupy higher memory addresses

e Sotheresultis p—str

- strlen doesn't count the "\0' as part of the length of the string

University of Washington

Error scenarios

int strlen(char* str) {
char* p;
for (p=str; *p; pt++) ;
return (int) (p - str);

* What if the caller forgot to null terminate the string?

* What if the caller passes in a pointer that doesn't point to a string?

e E.g.,whatdoes strlen (NULL) return?

e Canwe add codeto strlen () to detect these errors?

University of Washington

Badness Example 1

int strlen(char* str) {
char* p;
for (p=str; *p; p+t+) ;
return (int) (p - str);

#include <stdio.h>

int main (int argc, char* argv[]) {
char* p = “This is a test”;
printf (“%d\n”, strlen (p)
printf (“%d\n”, strlen (&p|
printf (“%d\n”, strlen(p[3
return 0;

) ;
31))
1))

What is printed?

(What does char* argv[] mean?)

17

University of Washington

Badness Example 1 Answers

$ gcc -Wall strtest.c

strtest.c: In function ‘main’:

strtest.c:15: warning: passing argument 1 of ‘strlen’ makes pointer from
integer without a cast

/usr/include/string.h:399: note: expected ‘const char *’ but argument is
of type ‘char’

$./a.out

14

11

Segmentation fault

Note: | compiled the code for main() from the previous slide, but with
#include <string.h>
added at the top, and without the code for strlen() in my file.

18

University of Washington

Badness Example 2

#include <stdio.h>
#include <string.h>

int main (int argc, char* argv[]) {
int intArrayl([] = {1, 2, 3, 0};
int intArray2[] = {-1, -2, -3};
printf(“%d\n”, strlen (intArrayl));
printf(“%d\n”, strlen (intArray2));
return 0;

What is printed?

19

University of Washington

Badness Example 2 Answers

int intArrayl[] = {1, 2, 3, 0};
int intArray2[] = {-1, -2, -3};

$ gcc -Wall strtest.c

strtest.c: In function ‘main’:

strtest.c:18: warning: passing argument 1 of ‘strlen’ from incompatible
pointer type

/usr/include/string.h:399: note: expected ‘const char *’ but argument is
of type ‘int *’

strtest.c:19: warning: passing argument 1 of ‘strlen’ from incompatible
pointer type

/usr/include/string.h:399: note: expected ‘const char *’ but argument is
of type ‘int *’

$./a.out
1
16

20

University of Washington

Even Worse Example 3

#include <stdio.h>
#include <string.h>

int main (int argc,
int intArrayl[]
int intArray2|[]
printf (“%d\n”,
printf (“%d\n”,
return 0;

char* argvl[]) {
= {1, 2, 3, 0};
= {-1, _21 _3};
strlen((char*)intArrayl)
strlen((char*)intArray?2)

) ;
)

$ gcc -Wall strtest.c

$./a.out
1
16

21

