Today Wl Purr—

m More memory allocation!

oce

——

~¢ Me

ersity of Washington

Internal Fragmentation

m Fora given block, internal fragmentation occurs if payload is smaller than

block size ‘1 4 \lll"b((u)

(block
Internal ayload Internal
fragmentation pay! fragmentation

W

m Caused by Fiegranm o l’q
" overhead of maintaining heap data structures (inside block, outside payload)

" padding for alignment purposes
= explicit policy decisions
{e.g., to return a big block to satisfy a small request)
m Depends only on the pattern of previous requests

" thus, easy to measure

rsity of Washington

External Fragmentation

m Occurs when there is enough aggregate heap memory, but no
single free block is large enough

pl=mattoctdy [[[[[[[[[[[[[[[[T]]

p2=matects) [[[[[[TTTT[[[[[[T]]

p3=matlects) [[[[[[TTTTTTTTTT[]

Eree(p2) 0 I I A I

p4 = malloc(6)

ersity of Washington

Fragmentation

m Poor memory utilization caused by fragmentation
" jnternal fragmentation
= external fragmentation

ersity of Washington

External Fragmentation

m Occurs when there is enough aggregate heap memory, but no
single free block is large enough

pl=malteec) [[TTTTTTTTITTTTTT]]
——

p2=mattecs) [[[[[[T[]TLI[[[[[[T]]

L N O O O O Y v v v

Gwen> [(TTIET B [

rsity of Washington

External Fragmentation

m Occurs when there is enough aggregate heap memory, but no
single free block is large enough

pl=mattocc) [[[[[[[[[[[[[[[[]]

p2=mattecs) [[[[[[TTTT[[[[[[T]]

L N N O O O Y O v v v B

free(p2) 0 I I A I

pd = malloc(6) QOops! (what would happen now?)

External Fragmentation

m Occurs when there is enough aggregate heap memory, but no
single free block is large enough

pl=mattoctdy [[[[[[[[[[[[[[[[T]]

p2=matects) [[[[[[TTTT[[[[[[T]]

p3=matlects) [[[[[[TTTTTTTTTT[]

free(p2) (T T T ==L TTTTTTI-+]

pd = malloc(6) QOops! (what would happen now?)

Implementation Issues

m How to know how much memory is being free () 'd when
itis given only a pointer (and no length)?

m How to keep track of the free blocks?

Implementation Issues

m How to know how much memory is being free () 'd when
it is given only a pointer (and no length)?

m How to keep track of the free blocks?

m What to do with extra space when allocating a block that is
smaller than the free block it is placed in?

m How to pick a block to use for allocation—many might fit?

Implementation Issues

m How to know how much memory is being free () 'd when
it is given only a pointer (and no length)?

Implementation Issues

m How to know how much memory is being free () 'd when
it is given only a pointer (and no length)?

m How to keep track of the free blocks?

m What to do with extra space when allocating a block that is
smaller than the free block it is placed in? -

Implementation Issues

m How to know how much memory is being free () 'd when
it is given only a pointer (and no length)?

m How to keep track of the free blocks?

m What to do with extra space when allocating a block that is
smaller than the free block it is placed in?

m How to pick a block to use for allocation—many might fit?

m How to reinsert a freed block into the heap?

ersity of Washington ersity of Washington

Knowing How Much to Free Knowing How Much to Free

m Standard method m Standard method
® Keep the length of a block in the word preceding the block " Keepthe length of a block in the word preceding the block
= This word is often called the header field or header = This word is often called the header field or header
B Requires an extra word for every allocated block " Requires an extra word for every allocated block
po Lok

p0 = malloc(4)

block size data

ersity of Washington ersity of Washington

Knowing How Much to Free Keeping Track of Free Blocks

m Standard method
® Keep the length of a block in the word preceding the block
= This word is often called the header field or header

B Requires an extra word for every allocated block

[T T T T 1

po

p0 = malloc(d)

block size data

eeeen) [[] [T T LTI T

Keeping Track of Free Blocks Keeping Track of Free Blocks
m Method 1: Implicit list using length—links all blocks m Method 1: Implicit list using length—links all blocks
P e N
5 4 6 2 BIT T Tl TTT T2

m Method 2: Explicit list among the free blocks using pointers

Keeping Track of Free Blocks

m Method 1: implicit list using length—links all blocks

m Method 2: Explicit list among the free blocks using pointers

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size
® Can use a balanced binary tree (e.g. red-black tree) with painters
within each free block, and the length used as a key

Washington

Implicit List

m For each block we need: length, is-allocated?
" Could store this information in two words: wasteful!

m Standard trick
" |f blocks are aligned, some low-order address bits are always 0
" |nstead of storing an always-0 bit, use it as a allocated/free flag

" When reading size word, must mask out this bit

1word
size | a a = 1: allocated block
a = 0: free block
Format of
allocated and payload size: block size
free biocks
payload: application data
blocks only}
optional
padding

rsity of Washington

Implicit List: Finding a Free Block

- Universityof Washington |

Implicit List

m For each block we need: length, is-allocated?
CNEt, 157al0talct

" Two words total. Is that the best we coulddo?

Washington

Example

Sequence of blocks in heap: 2/0, 4/1, 8/0, 4/1

Start of heap

D Free word
] e [] [[[[[[[[T [anocatedword

C ?
/f” - — . Allocated word
LW unused
+ &
s Ll

8 bytes =2 word alignment

m 8-bytealignment 7 wods
s
" May require initial unused word
" Causes some internal fragmentation

m One word (0/1) to mark end of list

m Here: block size in words for simplicity

ty of Washington

Implicit List: Finding a Free Block

m First fit:
= Search list from beginning, choose first free block that fits: (Cost? Gooed?)

p = start;
[While ((p < end) && \\ not passed end
(Cp & 1) 11 \\

(¥p == Ien))) \\
p=p+ (*p & -2); \\)

Washington

Implicit List: Finding a Free Block

m First fit:
= Search list from beginning, choose first free block that fits: (Cost?)

p = start;
while ((p < end) && \\ not passed end
((*p & 1) || \\ already allocated
(*p <= len))) \\ too small
p=p+ (*p & -2); \\ goto next block (word addressed)

® (Can take linear time in total number of blocks (allocated and free)
m Best fit:
= Search the list, choose the best free block: fits, with fewest bytes left over
® Keeps fragments small—usually helps fragmentation
= Will typically run slower than first-fit
m Next fit:
= Like first-fit, but search list starting where previous search finished
" Should often be faster than first-fit: avoids re-scanning unhelpful blocks

= Some research suggests that fragmentation is worse

Implicit List: Allocating in Free Block

m Allocatingin a free block: splitting

" Since allocated space might be smaller than free space, we might want
to split the block. After allocating block of size 4.

f Washington

Implicit List: Freeing a Block

m Simplest implementation?

Washington

Implicit List: Allocating in Free Block

m You found the free block, then what?

- Universityof Washington |

Implicit List: Allocating in Free Block

m Allocating in a free block: splitting

® Since allocated space might be smaller than free space, we might want
to split the block. After allocating block of size 4.

- —

addblock(p, 4)

OEEEOEENOEEROEEN
void addblock(ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even
int oldsize = *p & -2; // mask out low bit
*p = newsize | 1; // set new length
if (newsize < oldsize)
*(pmewsize) = oldsize - newsize; // set length in remaining
} // part of block

f Washington

Implicit List: Freeing a Block

m Simplest implementation:
" Need only clear the “allocated” flag
void free block(ptr p) { *p = *p & -2 }

4 a L3 2 2
¥
free(p) P
4 4 4 2

Great, we are done! Aren’t we ? Any problems?

£ Washington

Implicit List: Freeing a Block

= Simplest implementation:

" Need only clear the “allocated” flag
void free block(ptr p) { *p = *p & -2 }

" Butcan lead to “false fragmentation”

4 a L3 2 2
¥
free(p) P
4 4 4 2

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it

How do we fix this?

£ Washington

Implicit List: Coalescing

m Join (coalesce) with next/previous blocks, if they are free

" Coalescing with next block

logically

free(p) gone

void free block(ptr p) (
*p = *p & -2; // clear allocated flag
next = p + *p; // find next block
if ((*next & 1) — 0)
*p = *p + *next, // add to this block if
} // not allocated

" Ehm... But how do we coalesce with previous block?

£ Washington

Implicit List: Bidirectional Coalescing

m Boundary tags [Knuth73]
X) —
= Replicate size/allocated word at “hottom” {end) of free blocks
= Allows us to traverse the “list” backwards, but requires extra space
= |Important and general technique!

LT [s]sT T

Header — size a

a =1: allocated block
Format of a 20: free block
allocated and ayload and

R size: total block size

free blocks pacding

payload: application data

Boundary tag ——» size 2| lallocated blacks only]
(footer)

£ Washington

Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4
allocated allocated free free
block being
freed
allocated free allocated free

ty of Washington

Constant Time Coalescing

mi |1 ml |1 ml |1 ml |1

mi |1 mi |1 mi |1 mi |1

w1 " |0 1] fmz) |0
_ — —

n [1 n_ | n__ |1

m2_ |1 m2 |1 m2

m2__ |1 m2__ |1 mz_ o n+m2__ | O,

ml_ |0 (ntml) |0 mi [0 @mi+m2) | 0
— mi_ Jo)

n [1 \ n
—_— - J—

n [1 n+ml [0 n RN

m2_ |1 m2_ |1 mz |0

mz_ [1 mz__[1 m2__ |0 wml+m2 J 0

Implicit Lists: Summary

m Implementation: very simple
m Allocate cost:
" linear time worst case
m Free cost:
" constant time worst case
= even with coalescing
m Memory usage:
" will depend on placement policy
® First-fit, next-fit or best-fit

m Not used in practice formalloc () /free () because of
linear-time allocation
= used in many special purpose applications

m The concepts of splitting and boundary tag coalescing are
general to all allocators

ersity of Washington ersity of Washington

Keeping Track of Free Blocks Explicit Free Lists

m Method 1: implicit free list using length—links all blocks

Allocated (as before) Free

size a)/ size a
: 2 e 2 next
payload and prev
m Method 2: Explicit free list among the free blocks using pointers padding
I T [aL T Tel T T 11 I2[] (5'“’ P size a

m Method 3: Segregated free list

= Different free lists for different size classes = Maintain list(s) of free blocks, not ali blocks

" The “next” free block could be anywhere. |

. [
» Method 4: Blocks sorted by size Still need boundary tags for coalescing
® Can use a balanced tree (e.g. Red-Black tree) with pointers within each * Luckilywe Trackonly free Blocks, so we can use payload area

free block, and the length used as a key

ersity of Washington ersity of Washington

Explicit Free Lists Explicit Free Lists
m Logically (doubly-linked lists): m Logically (doubly-linked lists):
I — = G I = = I

m Physically: blocks can be in any order

Forward (next) links

[e[sT T Talal"] 4]

Back (prev) links

o] f7Talel T TaTs [T
A c

Allocating From Explicit Free Lists Allocating From Explicit Free Lists

conceptual graphic conceptual graphic

Before e Before @
T ee X
@

After % (with splitting)

Is ® |

= malloc(.)

ersity of Washington

Freeing With Explicit Free Lists

m Insertion policy: Where in the free list do you put a newly
freed block?

= LIFO (last-in-first-out) policy
= Insert freed block at the beginning of the free list
= Pro?

= Con?

" Address-ordered policy

= |nsert freed blocks so that free list blocks are always in address
order:

addr(prev) < addr(curr) < addr(next)
= Con?

= Pro?

ersity of Washington

Freeing With a LIFO Policy (Case 1)

conceptual graphic
Before

free/(.)
o
Root B~ [LTTILILITTL] \io

Freeing With a LIFO Policy (Case 2)

concentual graphic
Before free (p)

Root

v 1 e
O [L sl
v t

ersity of Washington

Freeing With Explicit Free Lists

m Insertion policy: Where in the free list do you put a newly
freed block?

= LIFO (last-in-first-out) policy
= Insert freed block at the beginning of the free list
= Pro:simple and constant time

= Con:studies suggest fragmentation is worse than address ordered

" Address-ordered policy

= |nsert freed blocks so that free list blocks are always in address
order:

addr{prev) < addr(curr) < addr(next)

= Con:requires search

= Pro:studies suggest fragmentation is lower than LIFO

ersity of Washington

Freeing With a LIFO Policy (Case 1)

conceptual graphic
Before

free/(.)
o
Root B~ LTI IIILITTT] \io

m Insert the freed block at the root of the list

After

Root [l CICTTTIeTol T TTTT] ﬂ;p

Freeing With a LIFO Policy (Case 2)

concentual

Before free (p)

Root

= Splice out predecessor block, coalesce both memory blocks,
and insert the new block at the root of the list

After

Root o

Freeing With a LIFO Policy (Case 3)

conceptual graphic
Before freey)

B O T~

Root CETTTT T l8] T Iilo\

m Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

After

Root [V [e]

o

Freeing With a LIFO Policy (Case 4)

conceplual graphic

Before

Root

= Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list

After

Root [l———[¢TO

wr

ersity of Washington

Explicit List Summary

m Comparison to implicit list:
" Allocate is linear time in number of free blocks instead of all blocks
= Much faster when most of the memory is full
= Slightly more complicated allocate and free since needs to splice blocks
in and out of the list
" Some extra space for the links (2 extra words needed for each block)

= Does this increase internal fragmentation?

= Most common use of linked lists is in conjunction with
segregated free lists
" Keep multiple linked lists of different size classes, or possibly for
different types of objects

Segregated List (Seglist) Allocators

m Eachsize class of blocks has its own free list

S e T e N
ss[ITTTTTTHITITTIT -~
sod [TTTTTTTTTITTITITT -

m Often have separate classes for each small size
m For larger sizes: One class for each two-power size

ersity of Washington

Keeping Track of Free Blocks

m Method 1: Implicit list using length—links all blocks

m Method 2: Explicit list among the free blocks using pointers

m Method 3: Segregated free list
® Different free lists for different size classes

m Method 4: Blocks sorted by size
® Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Seglist Allocator

m Given an array of free lists, each one for some size class

m To allocate a block of size n:
= Search appropriate free list for block of sizem >n
" |f an appropriate block is found:
= Split block and place fragment on appropriate list (optional)
" |f no block is found, try next larger class
" Repeat until block is found

m If no block is found:
" Request additional heap memory from OS (using sbrk ())
= Allocate block of n bytes from this new memory
" Place remainder as a single free block in largest size class

£ Washington

Seglist Allocator (cont.)

m To free a block:

® Coalesce and place on appropriate list (optional)

m Advantages of seglist allocators
" Higher throughput
= log time for power-of-two size classes
" Better memaory utilization
= First-fit search of segregated free list approximates a hest-fit
search of entire heap.

= Extreme case: Giving each hlock its own size class is equivalent to
best-fit.

£ Washington

Implicit Memory Management:
Garbage Collection

m Garbage collection: automatic reclamation of heap-allocated
storage—application never has to free

void foo() {
int *p = malloc(128);
return; /* p block is now garbage */

= Common in functional languages, scripting languages, and
modern object oriented languages:
" Lisp, ML, Java, Perl, Mathematica

m Variants (“conservative” garbage collectors) exist for C and C++
® However, cannot necessarily collect all garbage

Classical GC Algorithms

m Mark-and-sweep collection (McCarthy, 1960)
" Does not move hlocks (unless you also “compact”)

m Reference counting (Collins, 1960)
® Does not move blocks (not discussed)
m Copying collection (Minsky, 1963)
" Moves blocks (not discussed)
m Generational Collectors (Lieberman and Hewitt, 1983)
" Collection based on lifetimes
= Most allocations become garbage very soon
= So focus reclamation work on zones of memory recently allocated
m For more information:
Jones and Lin, “Garbage Collection: Algorithms for Automatic
Dynamic Memory”, John Wiley & Sons, 1996.

10

£ Washington

Summary of Key Allocator Policies

m Placement policy:
B First-fit, next-fit, best-fit, etc
= Trades off lower throughput for less fragmentation

= [nteresting observation: segregated free lists approximate a best fit
placement policy without having to search entire free list

m Splitting policy:
® When do we go ahead and split free blocks?
= How much internal fragmentation are we willing to tolerate?

m Coalescing policy:
" Immediate coalescing: coalesce each time free () iscalled
" Deferred coalescing: try to improve performance of free () by
deferring coalescing until needed. Examples:

= Coalesce as you scan the free list for malloc()
= Coalesce when the amount of external fragmentation reaches
some threshold

£ Washington

Garbage Collection

m How does the memory manager know when memory can be
freed?
= |ngeneral, we cannot know what is going to be used in the future since it
depends on conditionals
= But, we can tell that certain blocks cannot be used if there are no
pointers to them

m Must make certain assumptions about pointers
= Memory manager can distinguish pointers from non-pointers
= All pointers point to the start of a block in the heap

= Cannot hide pointers
(e.g., by casting (coercing) them to an int, and then back again)

Memory as a Graph

m We view memory as a directed graph
Each block is a node in the graph

Each pointer is an edge in the graph

Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, locations on the stack, global variables)
O reachable

Not-reachable

{garbage)
v @

Root nodes

Heap nodes

A node (block) is reachable if there is a path from any root to that node

Non-reachable nodes are garbage (cannot be needed by the application)

£ Washington

Mark and Sweep Collecting

m Can build on top of malloc/free package
" Allocate using malloc until you “run out of space”
m When out of space:
" Use extra mark bit in the head of each block
" Mark: Start at roots and set mark bit on each reachable block
" Sweep: Scan all blocks and free blocks that are not marked
root

¥
Beforemark | | 1 | | b [P T[T] T[]

N\
aftermark [T] T TLTTTA T T T TT T [meksese

A\
Aftersweep [Jree [LT T 17 #ee T 1 T71]

£ Washington

Mark and Sweep (cont.)

Mark using depth-first traversal of the memory graph

ptr mark(ptr p) {
if (1is_ptr(p)) return; // do nothing if not pointer
if (markBitset(p)) return; // check if already marked
setMarkBit (p) // set the mark bit
for (i=0; i < length(p), i++) // recursively call mark on

mark(p[il) ; // all words in the block

return;

}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
vhile (p < end) {
if markBitSet(p)
clearMarkBit () ;
else if (allocateBitSet(p))
free(p)
p += length(p) ;

Memory-Related Perils and Pitfalls

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory

Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks

Failing to free blocks

11

£ Washington

Assumptions For a Simple Implementation

m Application
" new (n): returns pointer to new block with all locations cleared
" read(b, i) : read location i of blockb into register

" write(b,i,v): writev intolocation i of block b

m Each block will have a header word
" Addressed asb[-1], forablockb

m Instructions used by the Garbage Collector
" is_ptr(p) : determines whether p is a pointer
® length (b): returns the length of block b, not including the header

" get_roots(): returns all the roots

£ Washington

Conservative Mark & Sweep in C

m A “conservative garbage collector” for C programs
" is_ptr() determinesifawordisa pointer by checking if it points to
an allocated block of memory
® But, in C pointers can point to the middle of a block
ptr
header l

m So how to find the beginning of the block?
B Can use a balanced binary tree to keep track of all allocated blocks
(key is start-of-block)
® Balanced-tree pointers can be stored in header (use two additional
words)

Left: smaller addresses
Right: larger addresses

Dereferencing Bad Pointers

m Theclassic scanf bug

int wal;

scanf ("&d”, val);

Reading Uninitialized Memory Overwriting Memory

m Assuming that heap data is initialized to zero m Allocating the (possibly) wrong sized object

/* return y = Ax */

int *matvec(int **A, int *x) { int **p;
int *y = malloc(N * sizeof(int))
int i, j;

p = malloc(N * sizeof(int))

for (i=0; i<N; i++) {

for (i=0; i<N; i++
{) pli] = malloc(M * sizeof(int));

for (3=0; j<N; j++)
y[i] += A[i][3] * x[3]; }
return y;

Overwriting Memory Overwriting Memory
m Off-by-one error m Not checking the max string size
int **p; char s[8];
int i;

p = malloc(N * sizeof(int *)),
gets(s); /* reads "123456789"” from stdin */

for (i=0; i<=N; i++) {
pli] = malloc(M * sizeof(int)),

} m Basis for classic buffer overflow attacks
" Your last assignment

Overwriting Memory Referencing Nonexistent Variables
m Misunderstanding pointer arithmetic m Forgetting that local variables disappear when a function
returns

int *search(int *p, int val) {
int *foo () {
while (*p && *p !'= val) int val;

p += sizeof(int);

return &val;

return p;

12

Freeing Blocks Multiple Times
m Nasty!

x = malloc(N * sizeof(int));
<manipulate x>
free(x) ;

y = malloe(M * sizeof(int));
<manipulate y>
free (x) ;

What does the free list look like?

x = malloc(N * sizeof(int));
<manipulate x>
free(x);

free(x);

Washington

Failing to Free Blocks (Memory Leaks)

m Slow, silent, long-term killer!

foo () {
int *x = malloc(N*sizeof(int))

return;

Washington

Memory bugs?

13

ersity of Washington

Referencing Freed Blocks

m Evil!

x = malloc(N * sizeof(int));
<manipulate x>
free(x);

y = malloc(M * sizeof(int));
for (i=0; i<M; i++)
yIi] = x[i]++;

ersity of Washington

Too much is reachable

m Mark procedure is recursive

" Will we have enough stack space?

m We are garbage collecting because we are running out of
memory, right?

rsity of Washington

Failing to Free Blocks (Memory Leaks)

m Freeing only part of a data structure

struct list {
int val;
struct list *next;

};

foo() {

struct list *head = malloc(sizeof(struct list));
head->val = 0;
head->next = NULL;

<create and manipulate the rest of the list>

free (head) ;
return;

Overwriting Memory

m Referencing a pointer instead of the object it points to

int *getPacket (int **packets, int *size) {
int *packet;
packet = packets[0]/
packets[0] = packets[*size - 1];
*size--; // what is happening here?
reorderPackets(packets, *size, 0);
return (packet) ;

£ Washington

14

Dealing With Memory Bugs

m Conventional debugger (gdb)
" Good for finding bad pointer dereferences
" Hard to detect the other memory bugs

m Debuggingmalloc (UToronto CSRImalloc)

= Wrapper around conventionalmalloc

" Detects memory bugs atmalloc and free boundaries
= Memory overwrites that corrupt heap structures
= Some instances of freeing blocks multiple times
= Memory leaks

= Cannotdetect all memory bugs
= Overwrites into the middle of allocated blocks
= Freeing block twice that has been reallocated in the interim
= Referencing freed blocks

£ Washington

